BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: D'Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res 2006;23:460-74. [PMID: 16400516 DOI: 10.1007/s11095-005-9397-8] [Cited by in Crossref: 170] [Cited by in F6Publishing: 149] [Article Influence: 10.6] [Reference Citation Analysis]
Number Citing Articles
1 Molavi F, Barzegar-jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. Journal of Controlled Release 2020;320:265-82. [DOI: 10.1016/j.jconrel.2020.01.028] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
2 Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021;11:373-95. [PMID: 33521866 DOI: 10.1007/s13346-021-00918-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li J, Rothstein SN, Little SR, Edenborn HM, Meyer TY. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers. J Am Chem Soc 2012;134:16352-9. [PMID: 22950719 DOI: 10.1021/ja306866w] [Cited by in Crossref: 98] [Cited by in F6Publishing: 77] [Article Influence: 9.8] [Reference Citation Analysis]
4 Puccetti M, Giovagnoli S, Zelante T, Romani L, Ricci M. Development of Novel Indole-3-Aldehyde-Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. J Pharm Sci 2018;107:2341-53. [PMID: 29715478 DOI: 10.1016/j.xphs.2018.04.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
5 Ensafi AA, Heydari-bafrooei E, Rezaei B. On the Use of Amperometry for Real Time Assessment of Drug-Release Profile from Therapeutic Nanoparticles. Electroanalysis 2014;26:776-85. [DOI: 10.1002/elan.201300591] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Michailova V, Berlinova I, Iliev P, Ivanov L, Titeva S, Momekov G, Dimitrov I. Nanoparticles formed from PNIPAM-g-PEO copolymers in the presence of indomethacin. International Journal of Pharmaceutics 2010;384:154-64. [DOI: 10.1016/j.ijpharm.2009.09.034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
7 Sturzenegger P, Gonzenbach U, Koltzenburg S, Martynczuk J, Gauckler L. Particle-stabilized gel-core microcapsules: Synthesis and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014;447:44-50. [DOI: 10.1016/j.colsurfa.2014.01.045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
8 Kupikowska-stobba B, Grzeczkowicz M, Lewińska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybernetics and Biomedical Engineering 2021;41:1347-64. [DOI: 10.1016/j.bbe.2021.05.003] [Reference Citation Analysis]
9 Omolo CA, Megrab NA, Kalhapure RS, Agrawal N, Jadhav M, Mocktar C, Rambharose S, Maduray K, Nkambule B, Govender T. Liposomes with pH responsive 'on and off' switches for targeted and intracellular delivery of antibiotics. J Liposome Res 2021;31:45-63. [PMID: 31663407 DOI: 10.1080/08982104.2019.1686517] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
10 Sharifi F, Meqbil YJ, Otte A, Gutridge AM, Blaine AT, van Rijn RM, Park K. Engineering Quick- and Long-acting Naloxone Delivery Systems for Treating Opioid Overdose. Pharm Res 2021;38:1221-34. [PMID: 34114163 DOI: 10.1007/s11095-021-03069-x] [Reference Citation Analysis]
11 Selmin F, Musazzi UM, Magri G, Rocco P, Cilurzo F, Minghetti P. Regulatory aspects and quality controls of polymer-based parenteral long-acting drug products: the challenge of approving copies. Drug Discov Today 2020;25:321-9. [PMID: 31883954 DOI: 10.1016/j.drudis.2019.12.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
12 Brown CK, Friedel HD, Barker AR, Buhse LF, Keitel S, Cecil TL, Kraemer J, Morris JM, Reppas C, Stickelmeyer MP, Yomota C, Shah VP. FIP/AAPS joint workshop report: dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech 2011;12:782-94. [PMID: 21688063 DOI: 10.1208/s12249-011-9634-x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 49] [Article Influence: 5.6] [Reference Citation Analysis]
13 Shiny J, Ramchander T, Goverdhan P, Habibuddin M, Aukunuru JV. Development and evaluation of a novel biodegradable sustained release microsphere formulation of paclitaxel intended to treat breast cancer. Int J Pharm Investig 2013;3:119-25. [PMID: 24167783 DOI: 10.4103/2230-973X.119212] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
14 D'Souza S, Faraj JA, Dorati R, DeLuca PP. A short term quality control tool for biodegradable microspheres. AAPS PharmSciTech 2014;15:530-41. [PMID: 24519488 DOI: 10.1208/s12249-013-0052-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
15 Shen J, Lee K, Choi S, Qu W, Wang Y, Burgess DJ. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int J Pharm 2016;498:274-82. [PMID: 26705156 DOI: 10.1016/j.ijpharm.2015.12.031] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
16 Siavashy S, Soltani M, Ghorbani-Bidkorbeh F, Fallah N, Farnam G, Mortazavi SA, Shirazi FH, Tehrani MHH, Hamedi MH. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr Polym 2021;265:118027. [PMID: 33966822 DOI: 10.1016/j.carbpol.2021.118027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci 2018;120:199-211. [PMID: 29751101 DOI: 10.1016/j.ejps.2018.05.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
18 D'Souza S, Faraj JA, Giovagnoli S, DeLuca PP. In vitro-in vivo correlation from lactide-co-glycolide polymeric dosage forms. Prog Biomater 2014;3:131-42. [PMID: 29470771 DOI: 10.1007/s40204-014-0029-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
19 Jug M, Hafner A, Lovrić J, Kregar ML, Pepić I, Vanić Ž, Cetina-čižmek B, Filipović-grčić J. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. Journal of Pharmaceutical and Biomedical Analysis 2018;147:350-66. [DOI: 10.1016/j.jpba.2017.06.072] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
20 Shepherd SD, O'Buckley SC, Harrington JM, Haines LG, Rothrock GD, Johnson LM, Nackley AG. A moldable sustained release bupivacaine formulation for tailored treatment of postoperative dental pain. Sci Rep 2018;8:12172. [PMID: 30111777 DOI: 10.1038/s41598-018-29696-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
21 Kožák J, Rabišková M, Lamprecht A. In-vitro drug release testing of parenteral formulations via an agarose gel envelope to closer mimic tissue firmness. Int J Pharm 2021;594:120142. [PMID: 33326826 DOI: 10.1016/j.ijpharm.2020.120142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Cooper DL, Conder CM, Harirforoosh S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv 2014;11:1661-80. [PMID: 25054316 DOI: 10.1517/17425247.2014.938046] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
23 Joshi AS, Thakur AK. Biodegradable delivery system containing a peptide inhibitor of polyglutamine aggregation: a step toward therapeutic development in Huntington's disease: NANOPARTICLES CONTAINING PEPTIDE INHIBITOR AGAINST POLYQ AGGREGATION. J Pept Sci 2014;20:630-9. [DOI: 10.1002/psc.2640] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
24 Dawoud M, Abourehab MA, Abdou R. Monoolein cubic nanoparticles as novel carriers for docetaxel. Journal of Drug Delivery Science and Technology 2020;56:101501. [DOI: 10.1016/j.jddst.2020.101501] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
25 Doty AC, Hirota K, Olsen KF, Sakamoto N, Ackermann R, Feng MR, Wang Y, Choi S, Qu W, Schwendeman A, Schwendeman SP. Validation of a cage implant system for assessing in vivo performance of long-acting release microspheres. Biomaterials 2016;109:88-96. [DOI: 10.1016/j.biomaterials.2016.07.041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
26 Kulkarni SS, Kompella UB. Nanoparticles for Drug and Gene Delivery in Treating Diseases of the Eye. In: Gilger BC, editor. Ocular Pharmacology and Toxicology. Totowa: Humana Press; 2014. pp. 291-316. [DOI: 10.1007/7653_2013_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
27 Weisser K, Stübler S, Matheis W, Huisinga W. Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products. Regulatory Toxicology and Pharmacology 2017;88:310-21. [DOI: 10.1016/j.yrtph.2017.02.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
28 D’souza S. A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms. Advances in Pharmaceutics 2014;2014:1-12. [DOI: 10.1155/2014/304757] [Cited by in Crossref: 47] [Cited by in F6Publishing: 26] [Article Influence: 5.9] [Reference Citation Analysis]
29 Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 2009;5:1575-81. [PMID: 19296563 DOI: 10.1002/smll.200801855] [Cited by in Crossref: 389] [Cited by in F6Publishing: 330] [Article Influence: 29.9] [Reference Citation Analysis]
30 Rothstein SN, Kay JE, Schopfer FJ, Freeman BA, Little SR. A retrospective mathematical analysis of controlled release design and experimentation. Mol Pharm 2012;9:3003-11. [PMID: 23009671 DOI: 10.1021/mp300388w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
31 Kelmann RG, Kuminek G, Teixeira HF, Koester LS. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. International Journal of Pharmaceutics 2007;342:231-9. [DOI: 10.1016/j.ijpharm.2007.05.004] [Cited by in Crossref: 110] [Cited by in F6Publishing: 84] [Article Influence: 7.3] [Reference Citation Analysis]
32 Cetin M, Atila A, Kadioglu Y. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech 2010;11:1250-6. [PMID: 20697984 DOI: 10.1208/s12249-010-9489-6] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 5.6] [Reference Citation Analysis]
33 Weng J, Tong HHY, Chow SF. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. Pharmaceutics 2020;12:E732. [PMID: 32759786 DOI: 10.3390/pharmaceutics12080732] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
34 Petersen S, Fahr A, Bunjes H. Flow cytometry as a new approach to investigate drug transfer between lipid particles. Mol Pharm 2010;7:350-63. [PMID: 20063898 DOI: 10.1021/mp900130s] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 4.3] [Reference Citation Analysis]
35 Tucker IG, Jain R, Alawi F, Nanjan K, Bork O. Translational studies on a ready-to-use intramuscular injection of penethamate for bovine mastitis. Drug Deliv Transl Res 2018;8:317-28. [PMID: 28512690 DOI: 10.1007/s13346-017-0388-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
36 Larsen SW, Jessen MNB, Østergaard J, Larsen C. Assessment of Drug Release from Oil Depot Formulations Using an In Vitro Model—Potential Applicability in Accelerated Release Testing. Drug Development and Industrial Pharmacy 2008;34:297-304. [DOI: 10.1080/03639040701655994] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
37 Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 2021;26:709-28. [PMID: 34176433 DOI: 10.1080/10837450.2021.1944207] [Reference Citation Analysis]
38 Thanki K, van Eetvelde D, Geyer A, Fraire J, Hendrix R, Van Eygen H, Putteman E, Sami H, de Souza Carvalho-Wodarz C, Franzyk H, Nielsen HM, Braeckmans K, Lehr CM, Ogris M, Foged C. Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration. J Control Release 2019;310:82-93. [PMID: 31398360 DOI: 10.1016/j.jconrel.2019.08.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
39 Klose D, Delplace C, Siepmann J. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. Int J Pharm 2011;404:75-82. [PMID: 21056644 DOI: 10.1016/j.ijpharm.2010.10.054] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
40 Pi F, Zhang H, Li H, Thiviyanathan V, Gorenstein DG, Sood AK, Guo P. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine 2017;13:1183-93. [PMID: 27890659 DOI: 10.1016/j.nano.2016.11.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
41 Prokopowicz M. Bioactive silica-based nanomaterials for doxorubicin delivery: Evaluation of structural properties associated with release rate. Materials Science and Engineering: C 2013;33:3942-50. [DOI: 10.1016/j.msec.2013.05.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
42 Tyner KM, Zou P, Yang X, Zhang H, Cruz CN, Lee SL. Product quality for nanomaterials: current U.S. experience and perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:640-54. [PMID: 25641690 DOI: 10.1002/wnan.1338] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
43 Klose D, Azaroual N, Siepmann F, Vermeersch G, Siepmann J. Towards More Realistic In Vitro Release Measurement Techniques for Biodegradable Microparticles. Pharm Res 2009;26:691-9. [DOI: 10.1007/s11095-008-9747-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
44 Amatya S, Park EJ, Park JH, Kim JS, Seol E, Lee H, Choi H, Shin Y, Na DH. Drug release testing methods of polymeric particulate drug formulations. Journal of Pharmaceutical Investigation 2013;43:259-66. [DOI: 10.1007/s40005-013-0072-5] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
45 Larsen S, Østergaard J, Yaghmur A, Jensen H, Larsen C. Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. Journal of Drug Delivery Science and Technology 2013;23:315-24. [DOI: 10.1016/s1773-2247(13)50048-7] [Cited by in Crossref: 12] [Article Influence: 1.3] [Reference Citation Analysis]
46 Levit SL, Yang H, Tang C. Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. Nanomaterials (Basel) 2020;10:E561. [PMID: 32244904 DOI: 10.3390/nano10030561] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
47 Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res 2012;2:284-92. [PMID: 23110256 DOI: 10.1007/s13346-012-0064-4] [Cited by in Crossref: 90] [Cited by in F6Publishing: 83] [Article Influence: 9.0] [Reference Citation Analysis]
48 Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine 2014;9:735-44. [PMID: 24511230 DOI: 10.2147/IJN.S55805] [Cited by in Crossref: 39] [Cited by in F6Publishing: 14] [Article Influence: 4.9] [Reference Citation Analysis]
49 Nippe S, General S. Combination of injectable ethinyl estradiol and drospirenone drug-delivery systems and characterization of their in vitro release. European Journal of Pharmaceutical Sciences 2012;47:790-800. [DOI: 10.1016/j.ejps.2012.08.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
50 Aylanc V, Ertosun S, Akyuz L, Koc Bilican B, Gokdag S, Bilican I, Cakmak YS, Yilmaz BA, Kaya M. Natural β-chitin-protein complex film obtained from waste razor shells for transdermal capsaicin carrier. International Journal of Biological Macromolecules 2020;155:508-15. [DOI: 10.1016/j.ijbiomac.2020.03.232] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Le Devedec F, Boucher H, Dubins D, Allen C. Factors Controlling Drug Release in Cross-linked Poly(valerolactone) Based Matrices. Mol Pharmaceutics 2018;15:1565-77. [DOI: 10.1021/acs.molpharmaceut.7b01102] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
52 Ishak RAH, Mortada ND, Zaki NM, El-shamy AEA, Awad GAS. Impact of microparticle formulation approaches on drug burst release: a level A IVIVC. Journal of Microencapsulation 2014;31:674-84. [DOI: 10.3109/02652048.2014.913724] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
53 Strasdat B, Bunjes H. Development of a new approach to investigating the drug transfer from colloidal carrier systems applying lipid nanosuspension-containing alginate microbeads as acceptor. International Journal of Pharmaceutics 2015;489:203-9. [DOI: 10.1016/j.ijpharm.2015.03.082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
54 Gong Z, Tootoonchi MH, Fraker CA, Walls JD. Reverse-dialysis can be misleading for drug release studies in emulsions as demonstrated by NMR dilution experiments. Int J Pharm 2021;608:121093. [PMID: 34534630 DOI: 10.1016/j.ijpharm.2021.121093] [Reference Citation Analysis]
55 Campardelli R, Reverchon E. Instantaneous coprecipitation of polymer/drug microparticles using the supercritical assisted injection in a liquid antisolvent. The Journal of Supercritical Fluids 2017;120:151-60. [DOI: 10.1016/j.supflu.2016.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
56 Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 2010;11:3298-322. [PMID: 20957095 DOI: 10.3390/ijms11093298] [Cited by in Crossref: 115] [Cited by in F6Publishing: 92] [Article Influence: 9.6] [Reference Citation Analysis]
57 Kim Y, Park EJ, Kim TW, Na DH. Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System. Pharmaceutics 2021;13:1313. [PMID: 34452274 DOI: 10.3390/pharmaceutics13081313] [Reference Citation Analysis]
58 Dawoud M, Hashem FM. Comparative study on the suitability of two techniques for measuring the transfer of lipophilic drug models from lipid nanoparticles to lipophilic acceptors. AAPS PharmSciTech 2014;15:1551-61. [PMID: 25128298 DOI: 10.1208/s12249-014-0179-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
59 Solomon D, Gupta N, Mulla NS, Shukla S, Guerrero YA, Gupta V. Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective. AAPS J 2017;19:1669-81. [PMID: 28924630 DOI: 10.1208/s12248-017-0142-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
60 Abdel-mottaleb MM, Lamprecht A. Standardized in vitro drug release test for colloidal drug carriers using modified USP dissolution apparatus I. Drug Development and Industrial Pharmacy 2010;37:178-84. [DOI: 10.3109/03639045.2010.502534] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
61 de Andrade DF, Zuglianello C, Pohlmann AR, Guterres SS, Beck RC. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System. AAPS PharmSciTech 2015;16:1409-17. [PMID: 25986595 DOI: 10.1208/s12249-015-0330-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
62 Kozak J, Rabiskova M, Lamprecht A. Muscle Tissue as a Surrogate for In Vitro Drug Release Testing of Parenteral Depot Microspheres. AAPS PharmSciTech 2021;22:119. [PMID: 33782794 DOI: 10.1208/s12249-021-01965-4] [Reference Citation Analysis]
63 Seidlitz A, Weitschies W. In-vitro dissolution methods for controlled release parenterals and their applicability to drug-eluting stent testing. Journal of Pharmacy and Pharmacology 2012;64:969-85. [DOI: 10.1111/j.2042-7158.2011.01439.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
64 Verderio P, Bonetti P, Colombo M, Pandolfi L, Prosperi D. Intracellular Drug Release from Curcumin-Loaded PLGA Nanoparticles Induces G2/M Block in Breast Cancer Cells. Biomacromolecules 2013;14:672-82. [DOI: 10.1021/bm3017324] [Cited by in Crossref: 98] [Cited by in F6Publishing: 87] [Article Influence: 10.9] [Reference Citation Analysis]
65 Dawoud M, Abdou R. Ion exchange column technique as a novel method for evaluating the release of docetaxel from different lipid nanoparticles. Drug Deliv Transl Res 2021. [PMID: 33768474 DOI: 10.1007/s13346-021-00937-2] [Reference Citation Analysis]
66 Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA Microparticles Entrapping Chitosan-Based Nanoparticles for the Ocular Delivery of Ranibizumab. Mol Pharm 2016;13:2923-40. [PMID: 27286558 DOI: 10.1021/acs.molpharmaceut.6b00335] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 9.5] [Reference Citation Analysis]
67 Raza F, Zhu Y, Chen L, You X, Zhang J, Khan A, Khan MW, Hasnat M, Zafar H, Wu J, Ge L. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 2019;7:2023-36. [DOI: 10.1039/c9bm00139e] [Cited by in Crossref: 50] [Cited by in F6Publishing: 11] [Article Influence: 16.7] [Reference Citation Analysis]
68 Klose D, Siepmann F, Willart J, Descamps M, Siepmann J. Drug release from PLGA-based microparticles: Effects of the “microparticle:bulk fluid” ratio. International Journal of Pharmaceutics 2010;383:123-31. [DOI: 10.1016/j.ijpharm.2009.09.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 4.6] [Reference Citation Analysis]
69 Nuchuchua O, Nejadnik MR, Goulooze SC, Lješković NJ, Every HA, Jiskoot W. Characterization of drug delivery particles produced by supercritical carbon dioxide technologies. The Journal of Supercritical Fluids 2017;128:244-62. [DOI: 10.1016/j.supflu.2017.06.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
70 Clementino A, Batger M, Garrastazu G, Pozzoli M, Del Favero E, Rondelli V, Gutfilen B, Barboza T, Sukkar MB, Souza SA, Cantù L, Sonvico F. The nasal delivery of nanoencapsulated statins - an approach for brain delivery. Int J Nanomedicine 2016;11:6575-90. [PMID: 27994459 DOI: 10.2147/IJN.S119033] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
71 Torshabi M, Nojehdehian H, Tabatabaei FS. In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin. J Investig Clin Dent 2017;8. [PMID: 26748575 DOI: 10.1111/jicd.12201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
72 Brunner CT, Baran ET, Pinho ED, Reis RL, Neves NM. Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems. Colloids and Surfaces B: Biointerfaces 2011;84:498-507. [DOI: 10.1016/j.colsurfb.2011.02.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
73 Silva LFC, Kasten G, de Campos CEM, Chinelatto AL, Lemos-senna E. Preparation and characterization of quercetin-loaded solid lipid microparticles for pulmonary delivery. Powder Technology 2013;239:183-92. [DOI: 10.1016/j.powtec.2013.01.037] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
74 Ling G, Zhang T, Zhang P, Sun J, He Z. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition. Int J Nanomedicine 2016;11:4077-91. [PMID: 27601896 DOI: 10.2147/IJN.S95767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
75 Judefeind A, de Villiers MM. Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems. In: de Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in Drug Delivery. New York: Springer; 2009. pp. 129-62. [DOI: 10.1007/978-0-387-77668-2_5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
76 Shen J, Burgess DJ. In Vitro Dissolution Testing Strategies for Nanoparticulate Drug Delivery Systems: Recent Developments and Challenges. Drug Deliv Transl Res 2013;3:409-15. [PMID: 24069580 DOI: 10.1007/s13346-013-0129-z] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 9.3] [Reference Citation Analysis]
77 Ankola DD, Ravi Kumar MNV, Chiellini F, Solaro R. Multiblock Copolymers of Lactic Acid and Ethylene Glycol Containing Periodic Side-Chain Carboxyl Groups: Synthesis, Characterization, and Nanoparticle Preparation. Macromolecules 2009;42:7388-95. [DOI: 10.1021/ma9012253] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
78 Rawat A, Burgess DJ. USP apparatus 4 method for in vitro release testing of protein loaded microspheres. International Journal of Pharmaceutics 2011;409:178-84. [DOI: 10.1016/j.ijpharm.2011.02.057] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
79 Jia L, Li Z, Shen J, Zheng D, Tian X, Guo H, Chang P. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm 2015;489:318-30. [PMID: 25956050 DOI: 10.1016/j.ijpharm.2015.05.010] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 8.4] [Reference Citation Analysis]
80 Maghsoudi A, Shojaosadati SA, Vasheghani Farahani E. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS PharmSciTech 2008;9:1092-6. [PMID: 18850275 DOI: 10.1208/s12249-008-9146-5] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 4.1] [Reference Citation Analysis]
81 Díaz de León–ortega R, D'arcy DM, Fotaki N. In vitro conditions for performance evaluation of products for intravascular administration: Developing appropriate test media using Amphotericin B as a model drug. European Journal of Pharmaceutical Sciences 2020;143:105174. [DOI: 10.1016/j.ejps.2019.105174] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Mönkäre J, Riikonen J, Rauma E, Salonen J, Lehto VP, Järvinen K. In vitro dissolution methods for hydrophilic and hydrophobic porous silicon microparticles. Pharmaceutics 2011;3:315-25. [PMID: 24310498 DOI: 10.3390/pharmaceutics3020315] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
83 Chaurasia S, Patel RR, Vure P, Mishra B. Oral naringenin nanocarriers: Fabrication, optimization, pharmacokinetic and chemotherapeutic efficacy assessments. Nanomedicine (Lond) 2017;12:1243-60. [PMID: 28593828 DOI: 10.2217/nnm-2016-0436] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
84 Dorati R, Genta I, Colonna C, Modena T, Pavanetto F, Perugini P, Conti B. Investigation of the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) copolymer. Polymer Degradation and Stability 2007;92:1660-8. [DOI: 10.1016/j.polymdegradstab.2007.06.020] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
85 Schoubben A, Blasi P, Deluca PP. Effect of Agitation Regimen on the in vitro Release of Leuprolide from Poly(Lactic-Co-Glycolic) Acid Microparticles. Journal of Pharmaceutical Sciences 2012;101:1212-20. [DOI: 10.1002/jps.23029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
86 Yaghmur A, Rappolt M, Østergaard J, Larsen C, Larsen SW. Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. Langmuir 2012;28:2881-9. [PMID: 22247936 DOI: 10.1021/la203577v] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 6.2] [Reference Citation Analysis]
87 Fatima MT, Chanchal A, Yavvari PS, Bhagat SD, Gujrati M, Mishra RK, Srivastava A. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin. Biomacromolecules 2016;17:2375-83. [PMID: 27192144 DOI: 10.1021/acs.biomac.6b00417] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
88 Bouchaala R, Mercier L, Andreiuk B, Mély Y, Vandamme T, Anton N, Goetz JG, Klymchenko AS. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J Control Release 2016;236:57-67. [PMID: 27327767 DOI: 10.1016/j.jconrel.2016.06.027] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 9.7] [Reference Citation Analysis]
89 D'Souza S, Faraj JA, Giovagnoli S, Deluca PP. Development of Risperidone PLGA Microspheres. J Drug Deliv 2014;2014:620464. [PMID: 24616812 DOI: 10.1155/2014/620464] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
90 Dubey R, Martini LG, Christie M. Duel-acting subcutaneous microemulsion formulation for improved migraine treatment with zolmitriptan and diclofenac: formulation and in vitro-in vivo characterization. AAPS J 2014;16:214-20. [PMID: 24363199 DOI: 10.1208/s12248-013-9557-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
91 Weng Larsen S, Larsen C. Critical factors influencing the in vivo performance of long-acting lipophilic solutions--impact on in vitro release method design. AAPS J 2009;11:762-70. [PMID: 19894123 DOI: 10.1208/s12248-009-9153-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
92 Garner J, Skidmore S, Park H, Park K, Choi S, Wang Y. Beyond Q1/Q2: The Impact of Manufacturing Conditions and Test Methods on Drug Release From PLGA-Based Microparticle Depot Formulations. Journal of Pharmaceutical Sciences 2018;107:353-61. [DOI: 10.1016/j.xphs.2017.10.027] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
93 Wang Y, Lin H, Wu C, Liu D. Forming of Demethoxycurcumin Nanocrystallite-Chitosan Nanocarrier for Controlled Low Dose Cellular Release for Inhibition of the Migration of Vascular Smooth Muscle Cells. Mol Pharmaceutics 2012;9:2268-79. [DOI: 10.1021/mp300150q] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
94 D'Souza S, Faraj JA, Giovagnoli S, Deluca PP. IVIVC from Long Acting Olanzapine Microspheres. Int J Biomater 2014;2014:407065. [PMID: 24578707 DOI: 10.1155/2014/407065] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
95 Cai Y, Lapitsky Y. Pitfalls in analyzing release from chitosan/tripolyphosphate micro- and nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2019;142:204-15. [DOI: 10.1016/j.ejpb.2019.06.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
96 Kim YT, Yum S, Heo JS, Kim W, Jung Y, Kim YM. Dithiocarbamate chitosan as a potential polymeric matrix for controlled drug release. Drug Development and Industrial Pharmacy 2013;40:192-200. [DOI: 10.3109/03639045.2012.753900] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
97 Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, Andersen PH. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci 2008;97:4622-54. [PMID: 18306275 DOI: 10.1002/jps.21346] [Cited by in Crossref: 170] [Cited by in F6Publishing: 157] [Article Influence: 13.1] [Reference Citation Analysis]
98 Zupančič O, Grießinger JA, Lam HT, Bernkop-schnürch A. Storage Stability of Bivalirudin: Hydrophilic Versus Lipophilic Solutions. Journal of Pharmaceutical Sciences 2017;106:1322-30. [DOI: 10.1016/j.xphs.2017.01.019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
99 Dehghan Kelishady P, Saadat E, Ravar F, Akbari H, Dorkoosh F. Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation. Pharmaceutical Development and Technology 2014;20:1009-17. [DOI: 10.3109/10837450.2014.965323] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
100 Larsen C, Larsen SW, Jensen H, Yaghmur A, Ostergaard J. Role of in vitro release models in formulation development and quality control of parenteral depots. Expert Opin Drug Deliv 2009;6:1283-95. [PMID: 19941410 DOI: 10.1517/17425240903307431] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 5.5] [Reference Citation Analysis]
101 Bouaoud C, Xu S, Mendes E, Lebouille JGJL, De Braal HEA, Meesters GMH. Development of biodegradable polymeric nanoparticles for encapsulation, delivery, and improved antifungal performance of natamycin. J Appl Polym Sci 2016;133. [DOI: 10.1002/app.43736] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
102 D'souza S. Injectables. In: Fotaki N, Klein S, editors. In Vitro Drug Release Testing of Special Dosage Forms. Wiley; 2019. pp. 55-85. [DOI: 10.1002/9781118675748.ch3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
103 Janas C, Mast MP, Kirsamer L, Angioni C, Gao F, Mäntele W, Dressman J, Wacker MG. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers. Eur J Pharm Biopharm 2017;115:73-83. [PMID: 28213179 DOI: 10.1016/j.ejpb.2017.02.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
104 Knoke S, Bunjes H. Transfer of Lipophilic Drugs from Nanoemulsions into Lipid-Containing Alginate Microspheres. Pharmaceutics 2021;13:173. [PMID: 33525325 DOI: 10.3390/pharmaceutics13020173] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Shen J, Burgess DJ. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J Pharm Pharmacol 2012;64:986-96. [PMID: 22686344 DOI: 10.1111/j.2042-7158.2012.01482.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 67] [Article Influence: 7.6] [Reference Citation Analysis]
106 Lassalle V, Ferreira M. Experimental problems in the application of UV/visible based methods as the quantification tool for the entrapped/released insulin from PLGA carriers. J Chem Technol Biotechnol 2009;84:1263-73. [DOI: 10.1002/jctb.2171] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
107 Huang J, Yu X, Zhou Y, Zhang R, Song Q, Wang Q, Li X. Directing the nanoparticle formation by the combination with small molecular assembly and polymeric assembly for topical suppression of ocular inflammation. Int J Pharm 2018;551:223-31. [PMID: 30213683 DOI: 10.1016/j.ijpharm.2018.09.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
108 Zou P, Chen H, Paholak HJ, Sun D. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles. Mol Pharm 2013;10:4185-94. [PMID: 24033270 DOI: 10.1021/mp4002393] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]
109 Patel B, Gupta N, Ahsan F. Low-molecular-weight heparin (LMWH)-loaded large porous PEG-PLGA particles for the treatment of asthma. J Aerosol Med Pulm Drug Deliv 2014;27:12-20. [PMID: 24286441 DOI: 10.1089/jamp.2013.1073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
110 Giteau A, Venier-julienne M, Aubert-pouëssel A, Benoit J. How to achieve sustained and complete protein release from PLGA-based microparticles? International Journal of Pharmaceutics 2008;350:14-26. [DOI: 10.1016/j.ijpharm.2007.11.012] [Cited by in Crossref: 200] [Cited by in F6Publishing: 181] [Article Influence: 14.3] [Reference Citation Analysis]
111 Larsen SW, Frost AB, Østergaard J, Marcher H, Larsen C. On the mechanism of drug release from oil suspensions in vitro using local anesthetics as model drug compounds. European Journal of Pharmaceutical Sciences 2008;34:37-44. [DOI: 10.1016/j.ejps.2008.02.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
112 Ishak RA, Awad GA, Zaki NM, El-shamy AEA, Mortada ND. A comparative study of chitosan shielding effect on nano-carriers hydrophilicity and biodistribution. Carbohydrate Polymers 2013;94:669-76. [DOI: 10.1016/j.carbpol.2013.01.072] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
113 Doty AC, Zhang Y, Weinstein DG, Wang Y, Choi S, Qu W, Mittal S, Schwendeman SP. Mechanistic analysis of triamcinolone acetonide release from PLGA microspheres as a function of varying in vitro release conditions. Eur J Pharm Biopharm 2017;113:24-33. [PMID: 27865933 DOI: 10.1016/j.ejpb.2016.11.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
114 Gupta V, Trivedi P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. Lipid Nanocarriers for Drug Targeting. Elsevier; 2018. pp. 563-627. [DOI: 10.1016/b978-0-12-813687-4.00015-3] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
115 Forrest WP, Reuter KG, Shah V, Kazakevich I, Heslinga M, Dudhat S, Patel S, Neri C, Mao Y. USP Apparatus 4: a Valuable In Vitro Tool to Enable Formulation Development of Long-Acting Parenteral (LAP) Nanosuspension Formulations of Poorly Water-Soluble Compounds. AAPS PharmSciTech 2018;19:413-24. [DOI: 10.1208/s12249-017-0842-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
116 Swaine T, Tang Y, Garcia P, John J, Waters LJ, Lewis AL. Evaluation of ion exchange processes in drug-eluting embolization beads by use of an improved flow-through elution method. European Journal of Pharmaceutical Sciences 2016;93:351-9. [DOI: 10.1016/j.ejps.2016.08.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
117 Verderio P, Pandolfi L, Mazzucchelli S, Marinozzi MR, Vanna R, Gramatica F, Corsi F, Colombo M, Morasso C, Prosperi D. Antiproliferative Effect of ASC-J9 Delivered by PLGA Nanoparticles against Estrogen-Dependent Breast Cancer Cells. Mol Pharmaceutics 2014;11:2864-75. [DOI: 10.1021/mp500222k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
118 Sharifi S, Caracciolo G, Mahmoudi M. Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends in Pharmacological Sciences 2020;41:641-52. [DOI: 10.1016/j.tips.2020.06.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
119 Gaucher G, Poreba M, Ravenelle F, Leroux JC. Poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) as polymeric emulsifier for the preparation of biodegradable nanoparticles. J Pharm Sci 2007;96:1763-75. [PMID: 17387697 DOI: 10.1002/jps.20833] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
120 Kumar R, Palmieri MJ Jr. Points to consider when establishing drug product specifications for parenteral microspheres. AAPS J 2010;12:27-32. [PMID: 19921439 DOI: 10.1208/s12248-009-9156-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
121 Díaz de León-ortega R, D'arcy DM, Bolhuis A, Fotaki N. Investigation and simulation of dissolution with concurrent degradation under healthy and hypoalbuminaemic simulated parenteral conditions- case example Amphotericin B. European Journal of Pharmaceutics and Biopharmaceutics 2018;127:423-31. [DOI: 10.1016/j.ejpb.2018.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
122 Zeng FR, Liang Y, Li ZL. Precision Aliphatic Polyesters via Segmer Assembly Polymerization. Molecules 2018;23:E452. [PMID: 29463013 DOI: 10.3390/molecules23020452] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
123 Martinez M, Rathbone M, Burgess D, Huynh M. In vitro and in vivo considerations associated with parenteral sustained release products: A review based upon information presented and points expressed at the 2007 Controlled Release Society Annual Meeting. Journal of Controlled Release 2008;129:79-87. [DOI: 10.1016/j.jconrel.2008.04.004] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 5.5] [Reference Citation Analysis]
124 Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))–poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Advanced Drug Delivery Reviews 2016;107:289-332. [DOI: 10.1016/j.addr.2016.08.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
125 Nippe S, Preuße C, General S. Evaluation of the in vitro release and pharmacokinetics of parenteral injectable formulations for steroids. European Journal of Pharmaceutics and Biopharmaceutics 2013;83:253-65. [DOI: 10.1016/j.ejpb.2012.09.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
126 Pukale SS, Mittal A, Chitkara D. Topical Application of Vitamin D3-Loaded Hybrid Nanosystem to Offset Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2021;22:238. [PMID: 34561775 DOI: 10.1208/s12249-021-02116-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Baba K, Tanaka Y, Kubota A, Kasai H, Yokokura S, Nakanishi H, Nishida K. A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye. Journal of Controlled Release 2011;153:278-87. [DOI: 10.1016/j.jconrel.2011.04.019] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 4.5] [Reference Citation Analysis]
128 Söderberg L, Dyhre H, Roth B, Björkman S. The "inverted cup" -- a novel in vitro release technique for drugs in lipid formulations. J Control Release 2006;113:80-8. [PMID: 16697069 DOI: 10.1016/j.jconrel.2006.03.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
129 Ankrum JA, Miranda OR, Ng KS, Sarkar D, Xu C, Karp JM. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat Protoc 2014;9:233-45. [PMID: 24407352 DOI: 10.1038/nprot.2014.002] [Cited by in Crossref: 67] [Cited by in F6Publishing: 59] [Article Influence: 8.4] [Reference Citation Analysis]
130 Muthuswamy S, Viswanathan A, Yegappan R, Selvaprithiviraj V, Vasudevan AK, Biswas R, Jayakumar R. Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing. ACS Appl Bio Mater 2019;2:378-87. [DOI: 10.1021/acsabm.8b00625] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
131 Chaurasia S, Mounika K, Bakshi V, Prasad V. 3-month parenteral PLGA microsphere formulations of risperidone: Fabrication, characterization and neuropharmacological assessments. Materials Science and Engineering: C 2017;75:1496-505. [DOI: 10.1016/j.msec.2017.03.065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
132 Park CW, Lee HJ, Oh DW, Kang JH, Han CS, Kim DW. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection. Drug Des Devel Ther 2018;12:711-9. [PMID: 29670329 DOI: 10.2147/DDDT.S151437] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
133 Kravanja KA, Finšgar M. Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants. Biomedicines 2021;9:1936. [PMID: 34944750 DOI: 10.3390/biomedicines9121936] [Reference Citation Analysis]
134 Öztürk K, Ertürk AS, Sarısözen C, Tulu M, Çalış S. Cytotoxicity and in vitro characterization studies of synthesized Jeffamine-cored PAMAM dendrimers. Journal of Microencapsulation 2013;31:127-36. [DOI: 10.3109/02652048.2013.814727] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
135 Chavanpatil MD, Khdair A, Panyam J. Surfactant-polymer Nanoparticles: A Novel Platform for Sustained and Enhanced Cellular Delivery of Water-soluble Molecules. Pharm Res 2007;24:803-10. [DOI: 10.1007/s11095-006-9203-2] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 4.9] [Reference Citation Analysis]
136 Chaurasia S, Patel RR, Vure P, Mishra B. Potential of Cationic-Polymeric Nanoparticles for Oral Delivery of Naringenin: In Vitro and In Vivo Investigations. J Pharm Sci 2018;107:706-16. [PMID: 29031951 DOI: 10.1016/j.xphs.2017.10.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
137 Natarajan JV, Nugraha C, Ng XW, Venkatraman S. Sustained-release from nanocarriers: a review. Journal of Controlled Release 2014;193:122-38. [DOI: 10.1016/j.jconrel.2014.05.029] [Cited by in Crossref: 127] [Cited by in F6Publishing: 110] [Article Influence: 15.9] [Reference Citation Analysis]
138 Rawat A, Burgess DJ. Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics. International Journal of Pharmaceutics 2010;394:99-105. [DOI: 10.1016/j.ijpharm.2010.05.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
139 Hirpara MR, Manikkath J, Sivakumar K, Managuli RS, Gourishetti K, Krishnadas N, Shenoy RR, Jayaprakash B, Rao CM, Mutalik S. Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: Development and in vitro and in vivo evaluations. Int J Biol Macromol 2018;107:2190-200. [PMID: 29042279 DOI: 10.1016/j.ijbiomac.2017.10.086] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
140 Körber M. PLGA Erosion: Solubility- or Diffusion-Controlled? Pharm Res 2010;27:2414-20. [DOI: 10.1007/s11095-010-0232-5] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
141 Knoke S, Bunjes H. Transfer Investigations of Lipophilic Drugs from Lipid Nanoemulsions to Lipophilic Acceptors: Contributing Effects of Cholesteryl Esters and Albumin as Acceptor Structures. Pharmaceuticals (Basel) 2021;14:865. [PMID: 34577565 DOI: 10.3390/ph14090865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
142 Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2021;192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
143 Cella C, Gerges I, Milani P, Lenardi C, Argentiere S. Calcium Stearate as an Effective Alternative to Poly(vinyl alcohol) in Poly-Lactic-co-Glycolic Acid Nanoparticles Synthesis. Biomacromolecules 2017;18:452-60. [PMID: 28030952 DOI: 10.1021/acs.biomac.6b01546] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
144 Samia O, Hanan R, Kamal el T. Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 2012;19:58-67. [PMID: 22191715 DOI: 10.3109/10717544.2011.644349] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
145 Chakraborty S, Mitra MK, Chaudhuri MG, Sa B, Das S, Dey R. Study of the release mechanism of Terminalia chebula extract from nanoporous silica gel. Appl Biochem Biotechnol 2012;168:2043-56. [PMID: 23076567 DOI: 10.1007/s12010-012-9916-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
146 D'Addio SM, Bukari AA, Dawoud M, Bunjes H, Rinaldi C, Prud'homme RK. Determining drug release rates of hydrophobic compounds from nanocarriers. Philos Trans A Math Phys Eng Sci 2016;374:20150128. [PMID: 27298440 DOI: 10.1098/rsta.2015.0128] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
147 Ye M, Duan H, Yao L, Fang Y, Zhang X, Dong L, Yang F, Yang X, Pan W. A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian J Pharm Sci 2019;14:222-32. [PMID: 32104454 DOI: 10.1016/j.ajps.2018.05.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
148 Gao Y, Zuo J, Bou-Chacra N, Pinto Tde J, Clas SD, Walker RB, Löbenberg R. In vitro release kinetics of antituberculosis drugs from nanoparticles assessed using a modified dissolution apparatus. Biomed Res Int 2013;2013:136590. [PMID: 23936771 DOI: 10.1155/2013/136590] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
149 Eleraky NE, Swarnakar NK, Mohamed DF, Attia MA, Pauletti GM. Permeation-Enhancing Nanoparticle Formulation to Enable Oral Absorption of Enoxaparin. AAPS PharmSciTech 2020;21:88. [PMID: 32016650 DOI: 10.1208/s12249-020-1618-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
150 Dawoud M. Investigations on the transfer of porphyrin from o/w emulsion droplets to liposomes with two different methods. Drug Development and Industrial Pharmacy 2014;41:156-62. [DOI: 10.3109/03639045.2013.850714] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
151 Pelczarska A, Delie F, Domańska U, Carrupt P, Martel S. New high throughput screening method for drug release measurements. European Journal of Pharmaceutics and Biopharmaceutics 2013;85:151-7. [DOI: 10.1016/j.ejpb.2013.02.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
152 Brown B, Ward A, Fazili Z, Østergaard J, Asare-Addo K. Application of UV dissolution imaging to pharmaceutical systems. Adv Drug Deliv Rev 2021;177:113949. [PMID: 34461199 DOI: 10.1016/j.addr.2021.113949] [Reference Citation Analysis]
153 Shetab Boushehri MA, Lamprecht A. Nanoparticles as drug carriers: current issues with in vitro testing. Nanomedicine 2015;10:3213-30. [DOI: 10.2217/nnm.15.154] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
154 Dang TT, Bratlie KM, Bogatyrev SR, Chen XY, Langer R, Anderson DG. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials 2011;32:4464-70. [PMID: 21429573 DOI: 10.1016/j.biomaterials.2011.02.048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]