BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang B, Zhang Y, Cao W, Wei X, Chen J, Ying W. SIRT2 Plays Significant Roles in Lipopolysaccharides-Induced Neuroinflammation and Brain Injury in Mice. Neurochem Res 2016;41:2490-500. [DOI: 10.1007/s11064-016-1981-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhao M, Zhang X, Tao X, Zhang B, Sun C, Wang P, Song T. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front Pharmacol 2021;12:646477. [PMID: 33897435 DOI: 10.3389/fphar.2021.646477] [Reference Citation Analysis]
2 Kim YY, Hur G, Lee SW, Lee SJ, Lee S, Kim SH, Rho MC. AGK2 ameliorates mast cell-mediated allergic airway inflammation and fibrosis by inhibiting FcεRI/TGF-β signaling pathway. Pharmacol Res 2020;159:105027. [PMID: 32565308 DOI: 10.1016/j.phrs.2020.105027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Zhang Y, Anoopkumar-Dukie S, Davey AK. SIRT1 and SIRT2 Modulators: Potential Anti-Inflammatory Treatment for Depression? Biomolecules 2021;11:353. [PMID: 33669121 DOI: 10.3390/biom11030353] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Fernando KKM, Wijayasinghe YS. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Front Cell Neurosci 2021;15:746631. [PMID: 34630044 DOI: 10.3389/fncel.2021.746631] [Reference Citation Analysis]
5 Jiao F, Wang Y, Zhang W, Zhang H, Chen Q, Shi C, Wang L, Gong Z. Protective role of AGK2 on thioacetamide-induced acute liver failure in mice. Life Sciences 2019;230:68-75. [DOI: 10.1016/j.lfs.2019.05.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
6 Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019;55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
7 Diaz-Perdigon T, Belloch FB, Ricobaraza A, Elboray EE, Suzuki T, Tordera RM, Puerta E. Early sirtuin 2 inhibition prevents age-related cognitive decline in a senescence-accelerated mouse model. Neuropsychopharmacology 2020;45:347-57. [PMID: 31471557 DOI: 10.1038/s41386-019-0503-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
8 Chen X, Lu W, Wu D. Sirtuin 2 (SIRT2): Confusing Roles in the Pathophysiology of Neurological Disorders. Front Neurosci 2021;15:614107. [PMID: 34108853 DOI: 10.3389/fnins.2021.614107] [Reference Citation Analysis]
9 Sun K, Wang X, Fang N, Xu A, Lin Y, Zhao X, Nazarali AJ, Ji S. SIRT2 suppresses expression of inflammatory factors via Hsp90-glucocorticoid receptor signalling. J Cell Mol Med 2020;24:7439-50. [PMID: 32515550 DOI: 10.1111/jcmm.15365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Woo J, Han D, Wang JI, Park J, Kim H, Kim Y. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation. J Proteome Res 2017;16:3419-32. [DOI: 10.1021/acs.jproteome.7b00445] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
11 Zhang Y, Chi D. Overexpression of SIRT2 Alleviates Neuropathic Pain and Neuroinflammation Through Deacetylation of Transcription Factor Nuclear Factor-Kappa B. Inflammation 2018;41:569-78. [DOI: 10.1007/s10753-017-0713-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
12 Zhang Y, Anoopkumar-Dukie S, Mallik SB, Davey AK. SIRT1 and SIRT2 modulators reduce LPS-induced inflammation in HAPI microglial cells and protect SH-SY5Y neuronal cells in vitro. J Neural Transm (Vienna) 2021;128:631-44. [PMID: 33821324 DOI: 10.1007/s00702-021-02331-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Jiao F, Wang Y, Zhang W, Zhang H, Chen Q, Wang L, Shi C, Gong Z. AGK2 Alleviates Lipopolysaccharide Induced Neuroinflammation through Regulation of Mitogen-Activated Protein Kinase Phosphatase-1. J Neuroimmune Pharmacol 2020;15:196-208. [PMID: 31786712 DOI: 10.1007/s11481-019-09890-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2020;11:585821. [PMID: 33597872 DOI: 10.3389/fphar.2020.585821] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021:S0149-7634(21)00489-9. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Reference Citation Analysis]
16 Fourcade S, Morató L, Parameswaran J, Ruiz M, Ruiz-Cortés T, Jové M, Naudí A, Martínez-Redondo P, Dierssen M, Ferrer I, Villarroya F, Pamplona R, Vaquero A, Portero-Otín M, Pujol A. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell 2017;16:1404-13. [PMID: 28984064 DOI: 10.1111/acel.12682] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
17 Liu P, Huang G, Wei T, Gao J, Huang C, Sun M, Zhu L, Shen W. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2018;1864:764-77. [DOI: 10.1016/j.bbadis.2017.12.027] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 11.8] [Reference Citation Analysis]
18 Hong JY, Lin H. Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Front Pharmacol 2021;12:735044. [PMID: 34650436 DOI: 10.3389/fphar.2021.735044] [Reference Citation Analysis]
19 Bhaskar A, Kumar S, Khan MZ, Singh A, Dwivedi VP, Nandicoori VK. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. Elife 2020;9:e55415. [PMID: 32697192 DOI: 10.7554/eLife.55415] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
20 Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E. Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. Int J Mol Sci 2021;22:3107. [PMID: 33803627 DOI: 10.3390/ijms22063107] [Reference Citation Analysis]
21 Shrishrimal S, Kosmacek EA, Oberley-Deegan RE. Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. Oxid Med Cell Longev 2019;2019:4278658. [PMID: 30881591 DOI: 10.1155/2019/4278658] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
22 Wu Z, Zhang Y, Zhang Y, Zhao P. Sirtuin 2 Inhibition Attenuates Sevoflurane-Induced Learning and Memory Deficits in Developing Rats via Modulating Microglial Activation. Cell Mol Neurobiol 2020;40:437-46. [PMID: 31713761 DOI: 10.1007/s10571-019-00746-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
23 Zhao G, He J, Wang Z, Bao L, Cong R, An W, Zhao X, Liu G. The small RNA microRNA-212 regulates sirtuin 2 expression in a cellular model of oxygen-glucose deprivation. Neuroreport 2019;30:1184-90. [PMID: 31651707 DOI: 10.1097/WNR.0000000000001339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2021;40:101843. [PMID: 33385630 DOI: 10.1016/j.redox.2020.101843] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yao LN, Zhang TF, Lin WQ, Jiang N, Cao HF, Li H, Qian JH. Value of serum and follicular fluid sirtuin (SIRT)1 and SIRT2 protein levels in predicting the outcome of assisted reproduction. Ann Transl Med 2021;9:343. [PMID: 33708970 DOI: 10.21037/atm-21-63] [Reference Citation Analysis]
26 Zhang Y, Anoopkumar-dukie S, Arora D, Davey AK. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. European Journal of Pharmacology 2020;867:172847. [DOI: 10.1016/j.ejphar.2019.172847] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
27 Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J Neuroimmunol 2020;341:577164. [PMID: 32007785 DOI: 10.1016/j.jneuroim.2020.577164] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
28 Xu Y, Cai R, Zhao Z, Zhou L, Zhou Q, Hassan S, Huang S, Zhang M, Xu G, Zou X. Thiomyristoyl ameliorates colitis by blocking the differentiation of Th17 cells and inhibiting SIRT2-induced metabolic reprogramming. Int Immunopharmacol 2021;90:107212. [PMID: 33310666 DOI: 10.1016/j.intimp.2020.107212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]