BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Golovin YI, Klyachko NL, Majouga AG, Sokolsky M, Kabanov AV. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-3746-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Kumar M, Sharma P, Maheshwari R, Tekade M, Shrivastava SK, Tekade RK. Beyond the Blood–Brain Barrier. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Elsevier; 2018. pp. 397-437. [DOI: 10.1016/b978-0-12-812218-1.00015-4] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
2 Ronzhin NO, Posokhina ED, Mikhlina EV, Mikhlin YL, Simunin MM, Tarasova LS, Vorobyev SA, Bondar VS, Ryzhkov II. A new composite material based on alumina nanofibers and detonation nanodiamonds: synthesis, characterization, and sensing application. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05309-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Serantes D, Chantrell R, Gavilán H, Morales MDP, Chubykalo-fesenko O, Baldomir D, Satoh A. Anisotropic magnetic nanoparticles for biomedicine: bridging frequency separated AC-field controlled domains of actuation. Phys Chem Chem Phys 2018;20:30445-54. [DOI: 10.1039/c8cp02768d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 3.8] [Reference Citation Analysis]
4 Veselov MM, Uporov IV, Efremova MV, Le-deygen IM, Prusov AN, Shchetinin IV, Savchenko AG, Golovin YI, Kabanov AV, Klyachko NL. Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS Omega. [DOI: 10.1021/acsomega.2c00704] [Reference Citation Analysis]
5 Gutsev GL, Bozhenko KV, Gutsev LG, Utenyshev AN, Aldoshin SM. Dependence of Properties and Exchange Coupling Constants on the Charge in the Mn 2 O n and Fe 2 O n Series. J Phys Chem A 2018;122:5644-55. [DOI: 10.1021/acs.jpca.8b03496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
6 Liu X, Zhang H, Zhang T, Wang Y, Jiao W, Lu X, Gao X, Xie M, Shan Q, Wen N, Liu C, Lee WSV, Fan H. Magnetic nanomaterials-mediated cancer diagnosis and therapy. Prog Biomed Eng 2021;4:012005. [DOI: 10.1088/2516-1091/ac3111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pham TD, Seo YH, Lee D, Noh J, Chae J, Kang E, Park J, Shin TJ, Kim S, Park J. Ordered assemblies of Fe3O4 and a donor-acceptor-type π-conjugated polymer in nanoparticles for enhanced photoacoustic and magnetic effects. Polymer 2019;161:205-13. [DOI: 10.1016/j.polymer.2018.12.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
8 Pasechnik L, Skachkov V, Bogdanova E, Chufarov AY, Kellerman D, Medyankina I, Yatsenko S. A promising process for transformation of hematite to magnetite with simultaneous dissolution of alumina from red mud in alkaline medium. Hydrometallurgy 2020;196:105438. [DOI: 10.1016/j.hydromet.2020.105438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
9 Gutsev LG, Gutsev GL, Jena P. Collective Superexchange and Exchange Coupling Constants in the Hydrogenated Iron Oxide Particle Fe8O12H8. J Phys Chem A 2018;122:5043-9. [PMID: 29746132 DOI: 10.1021/acs.jpca.8b03034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Tsuji T, Yoshitomi H, Ishikawa Y, Koshizaki N, Suzuki M, Usukura J. A method to selectively internalise submicrometer boron carbide particles into cancer cells using surface transferrin conjugation for developing a new boron neutron capture therapy agent. Journal of Experimental Nanoscience 2020;15:1-11. [DOI: 10.1080/17458080.2019.1692178] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Golovin YI, Zhigachev AO, Golovin DY, Gribanovsky SL, Kabanov AV, Klyachko NL. Straintronics for Nanomedicine: Manipulating Biochemical Systems via Controllable Macromolecular Nanodeformation. Bull Russ Acad Sci Phys 2020;84:815-9. [DOI: 10.3103/s1062873820070102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Maniotis N, Makridis A, Myrovali E, Theopoulos A, Samaras T, Angelakeris M. Magneto-mechanical action of multimodal field configurations on magnetic nanoparticle environments. Journal of Magnetism and Magnetic Materials 2019;470:6-11. [DOI: 10.1016/j.jmmm.2017.12.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Mdlovu NV, Lin K, Chen Y, Wu C. Formulation of magnetic nanocomposites for intracellular delivery of micro-RNA for MYCN inhibition in neuroblastoma. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;615:126264. [DOI: 10.1016/j.colsurfa.2021.126264] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
14 Golovin YI. Nanoindentation and Mechanical Properties of Materials at Submicro- and Nanoscale Levels: Recent Results and Achievements. Phys Solid State 2021;63:1-41. [DOI: 10.1134/s1063783421010108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
15 Efremova MV, Veselov MM, Barulin AV, Gribanovsky SL, Le-Deygen IM, Uporov IV, Kudryashova EV, Sokolsky-Papkov M, Majouga AG, Golovin YI, Kabanov AV, Klyachko NL. In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field. ACS Nano 2018;12:3190-9. [PMID: 29570975 DOI: 10.1021/acsnano.7b06439] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
16 Li J. The preparation of CNT/PMMA composite film on SiO 2 substrates. Materials Science-Poland 2021;39:639-45. [DOI: 10.2478/msp-2022-0001] [Reference Citation Analysis]
17 Jang J, Park CB. Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates. Sci Adv 2022;8:eabn1675. [PMID: 35544560 DOI: 10.1126/sciadv.abn1675] [Reference Citation Analysis]
18 Golovin YI, Klyachko NL, Majouga AG, Gribanovskii SL, Golovin DY, Zhigachev AO, Shuklinov AV, Efremova MV, Veselov MM, Vlasova KY, Usvaliev AD, Le-deygen IM, Kabanov AV. New Approaches to Nanotheranostics: Polyfunctional Magnetic Nanoparticles Activated by Non-Heating Low-Frequency Magnetic Field Control Biochemical System with Molecular Locality and Selectivity. Nanotechnol Russia 2018;13:215-39. [DOI: 10.1134/s1995078018030060] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Thorat ND, Tofail SAM, von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews 2019;6:041306. [DOI: 10.1063/1.5049467] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
20 Golovin YI, Zhigachev AO, Efremova MV, Majouga AG, Kabanov AV, Klyachko NL. Ways and Methods for Controlling Biomolecular Structures Using Magnetic Nanoparticles Activated by an Alternating Magnetic Field. Nanotechnol Russia 2018;13:295-304. [DOI: 10.1134/s1995078018030072] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]