BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang S, Zhang Y, Li Y, Jia W, Liu F, Yang M, Zhang Y. Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimed Tools Appl 2018;77:10393-417. [DOI: 10.1007/s11042-016-4222-4] [Cited by in Crossref: 64] [Cited by in F6Publishing: 7] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Goyal P, Rani R, Singh K. State-of-the-Art Machine Learning Techniques for Diagnosis of Alzheimer’s Disease from MR-Images: A Systematic Review. Arch Computat Methods Eng. [DOI: 10.1007/s11831-021-09674-8] [Reference Citation Analysis]
2 Liu M, Dong Z, Xin G, Sun Y, Qu R. An improved method based on a new wavelet transform for overlapped peak detection on spectrum obtained by portable Raman system. Chemometrics and Intelligent Laboratory Systems 2018;182:1-8. [DOI: 10.1016/j.chemolab.2018.08.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
3 Koh JEW, Jahmunah V, Pham T, Oh SL, Ciaccio EJ, Acharya UR, Yeong CH, Fabell MKM, Rahmat K, Vijayananthan A, Ramli N. Automated detection of Alzheimer's disease using bi-directional empirical model decomposition. Pattern Recognition Letters 2020;135:106-13. [DOI: 10.1016/j.patrec.2020.03.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
4 Gao S, Lima D. A review of the application of deep learning in the detection of Alzheimer's disease. International Journal of Cognitive Computing in Engineering 2022;3:1-8. [DOI: 10.1016/j.ijcce.2021.12.002] [Reference Citation Analysis]
5 [DOI: 10.1063/1.5033394] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
6 Yan Y. Gingivitis detection by fractional Fourier entropy with optimization of hidden neurons. International Journal of Cognitive Computing in Engineering 2020;1:36-44. [DOI: 10.1016/j.ijcce.2020.09.003] [Reference Citation Analysis]
7 Sharma S, Gupta R, Bhatia R, Toor AP, Setia H. Predicting microbial response to anthropogenic environmental disturbances using artificial neural network and multiple linear regression. International Journal of Cognitive Computing in Engineering 2021;2:65-70. [DOI: 10.1016/j.ijcce.2021.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Aouache M, Hussain A, Zulkifley MA, Wan Zaki DWM, Husain H, Abdul Hamid HB. Anterior osteoporosis classification in cervical vertebrae using fuzzy decision tree. Multimed Tools Appl 2018;77:4011-45. [DOI: 10.1007/s11042-017-4468-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
9 Wei J, Tian Y, Geng J. Research on group behavior model based on neural network computing. Computational Intelligence. [DOI: 10.1111/coin.12403] [Reference Citation Analysis]
10 Meng X, Wu Y, Liu W, Wang Y, Xu Z, Jiao Z. Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine. Front Neuroinform 2022;16:856295. [DOI: 10.3389/fninf.2022.856295] [Reference Citation Analysis]
11 Zhang Y, Jiang Y, Zhu W, Lu S, Zhao G. Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed Tools Appl 2018;77:22589-604. [DOI: 10.1007/s11042-017-4703-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 6.2] [Reference Citation Analysis]
12 Masih N, Naz H, Ahuja S. Multilayer perceptron based deep neural network for early detection of coronary heart disease. Health Technol 2021;11:127-38. [DOI: 10.1007/s12553-020-00509-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Moreira LB, Namen AA. A hybrid data mining model for diagnosis of patients with clinical suspicion of dementia. Computer Methods and Programs in Biomedicine 2018;165:139-49. [DOI: 10.1016/j.cmpb.2018.08.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
14 Ly H, Le LM, Duong HT, Nguyen TC, Pham TA, Le T, Le VM, Nguyen-ngoc L, Pham BT. Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Applied Sciences 2019;9:2258. [DOI: 10.3390/app9112258] [Cited by in Crossref: 46] [Cited by in F6Publishing: 11] [Article Influence: 15.3] [Reference Citation Analysis]
15 Jiao Z, Chen S, Shi H, Xu J. Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification. Brain Sciences 2022;12:80. [DOI: 10.3390/brainsci12010080] [Reference Citation Analysis]
16 Sharma S, Mandal PK. A Comprehensive Report on Machine Learning-based Early Detection of Alzheimer's Disease using Multi-modal Neuroimaging Data. ACM Comput Surv 2023;55:1-44. [DOI: 10.1145/3492865] [Reference Citation Analysis]
17 Gao S. Gray level co-occurrence matrix and extreme learning machine for Alzheimer's disease diagnosis. International Journal of Cognitive Computing in Engineering 2021;2:116-29. [DOI: 10.1016/j.ijcce.2021.08.002] [Reference Citation Analysis]
18 Shatte ABR, Hutchinson DM, Teague SJ. Machine learning in mental health: a scoping review of methods and applications. Psychol Med 2019;49:1426-48. [PMID: 30744717 DOI: 10.1017/S0033291719000151] [Cited by in Crossref: 116] [Cited by in F6Publishing: 55] [Article Influence: 38.7] [Reference Citation Analysis]
19 Amezquita-sanchez JP. Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations. Journal of Vibration and Control 2021;27:426-36. [DOI: 10.1177/1077546320929145] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li X, Wang J, Hao W, Wang M, Zhang M. Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions. Applied Soft Computing 2022;121:108766. [DOI: 10.1016/j.asoc.2022.108766] [Reference Citation Analysis]
21 Zhang Y, Wang S, Sui Y, Yang M, Liu B, Cheng H, Sun J, Jia W, Phillips P, Gorriz JM. Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization. J Alzheimers Dis 2018;65:855-69. [PMID: 28731432 DOI: 10.3233/JAD-170069] [Cited by in Crossref: 59] [Cited by in F6Publishing: 7] [Article Influence: 19.7] [Reference Citation Analysis]
22 Dua M, Makhija D, Manasa PYL, Mishra P. A CNN–RNN–LSTM Based Amalgamation for Alzheimer’s Disease Detection. J Med Biol Eng 2020;40:688-706. [DOI: 10.1007/s40846-020-00556-1] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
23 Selvaganesh B, Ganesan R. A hybrid segmentation and classification techniques for detecting the neurodegenerative disorder from brain Magnetic Resonance Images. Multimed Tools Appl. [DOI: 10.1007/s11042-022-12967-0] [Reference Citation Analysis]
24 Shankar VG, Sisodia DS, Chandrakar P. A novel discriminant feature selection–based mutual information extraction from MR brain images for Alzheimer's stages detection and prediction. Int J Imaging Syst Tech. [DOI: 10.1002/ima.22685] [Reference Citation Analysis]