BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci Mater Med 2018;29:134. [PMID: 30120577 DOI: 10.1007/s10856-018-6144-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Lan D, Li X, Li Z, Dai F. Conductive and antibacterial scaffold with rapid crimping property for application prospect in repair of peripheral nerve injury. J of Applied Polymer Sci 2022. [DOI: 10.1002/app.53426] [Reference Citation Analysis]
2 Guo Z, Sun D, Zhou X, Xu H, Huang Y, Chu C, Shen B. AuNP/Chitosan Nanocomposites Synthesized through Plasma Induced Liquid Chemistry and Their Applications in Photothermal Induced Bacteria Eradication. Pharmaceutics 2022;14:2147. [DOI: 10.3390/pharmaceutics14102147] [Reference Citation Analysis]
3 Li Y, Dong T, Li Z, Ni S, Zhou F, Alimi OA, Chen S, Duan B, Kuss M, Wu S. Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry 2022;24:100944. [DOI: 10.1016/j.mtchem.2022.100944] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Marine Drugs 2022;20:314. [DOI: 10.3390/md20050314] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sadraei SM, Kiani J, Ashtari B. Gold nanorods decorated polycaprolactone/cellulose acetate hybrid scaffold for PC12 cells proliferation. Int J Biol Macromol 2022:S0141-8130(22)00412-3. [PMID: 35240215 DOI: 10.1016/j.ijbiomac.2022.02.156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mayilswamy N, Jaya Prakash N, Kandasubramanian B. Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.2021905] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Parin FN, Terzioğlu P. Electrospun Porous Biobased Polymer Mats for Biomedical Applications. Advanced Functional Porous Materials 2022. [DOI: 10.1007/978-3-030-85397-6_18] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Pramanik S, Muthuvijayan V. Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering. Advances in Polymer Science 2022. [DOI: 10.1007/12_2022_130] [Reference Citation Analysis]
9 Rahimzadegan M, Mohammadi Q, Shafieian M, Sabzevari O, Hassannejad Z. Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. Mater Sci Eng C Mater Biol Appl 2021;:112634. [PMID: 35577691 DOI: 10.1016/j.msec.2021.112634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021;14:70. [PMID: 35056967 DOI: 10.3390/pharmaceutics14010070] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Toledo AL, da Silva TN, dos S. Vaucher AC, Miranda AHV, Silva GC, Vaz ME, Silva LVD, Barradas TN, Picciani PHS. Polymer Nanofibers for Biomedical Applications: Advances in Electrospinning. CAPS 2021;4:190-209. [DOI: 10.2174/2452271604666211122122557] [Reference Citation Analysis]
12 Li H, Yu B, Yang P, Zhan J, Fan X, Chen P, Liao X, Ou C, Cai Y, Chen M. Injectable AuNP-HA matrix with localized stiffness enhances the formation of gap junction in engrafted human induced pluripotent stem cell-derived cardiomyocytes and promotes cardiac repair. Biomaterials 2021;279:121231. [PMID: 34739980 DOI: 10.1016/j.biomaterials.2021.121231] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
13 Marsudi MA, Ariski RT, Wibowo A, Cooper G, Barlian A, Rachmantyo R, Bartolo PJDS. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Int J Mol Sci 2021;22:11543. [PMID: 34768972 DOI: 10.3390/ijms222111543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Hazer Rosberg DB, Hazer B, Stenberg L, Dahlin LB. Gold and Cobalt Oxide Nanoparticles Modified Poly-Propylene Poly-Ethylene Glycol Membranes in Poly (ε-Caprolactone) Conduits Enhance Nerve Regeneration in the Sciatic Nerve of Healthy Rats. Int J Mol Sci 2021;22:7146. [PMID: 34281198 DOI: 10.3390/ijms22137146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Sowmya B, Hemavathi AB, Panda PK. Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Prog Biomater 2021;10:91-117. [PMID: 34075571 DOI: 10.1007/s40204-021-00157-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
16 Plath A, Facchi S, Souza P, Sabino R, Corradini E, Muniz E, Popat K, Filho L, Kipper M, Martins A. Zein supports scaffolding capacity toward mammalian cells and bactericidal and antiadhesive properties on poly(ε-caprolactone)/zein electrospun fibers. Materials Today Chemistry 2021;20:100465. [DOI: 10.1016/j.mtchem.2021.100465] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Perez-Puyana V, Villanueva P, Jiménez-Rosado M, de la Portilla F, Romero A. Incorporation of Elastin to Improve Polycaprolactone-Based Scaffolds for Skeletal Muscle via Electrospinning. Polymers (Basel) 2021;13:1501. [PMID: 34066640 DOI: 10.3390/polym13091501] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Pooshidani Y, Zoghi N, Rajabi M, Haghbin Nazarpak M, Hassannejad Z. Fabrication and evaluation of porous and conductive nanofibrous scaffolds for nerve tissue engineering. J Mater Sci Mater Med 2021;32:46. [PMID: 33847824 DOI: 10.1007/s10856-021-06519-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
19 Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polym Adv Technol 2021;32:2267-89. [DOI: 10.1002/pat.5263] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
20 Phillips JA, Hutchings C, Djamgoz MBA. Clinical Potential of Nerve Input to Tumors: A Bioelectricity Perspective. Bioelectricity 2021;3:14-26. [PMID: 34476375 DOI: 10.1089/bioe.2020.0051] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Pita-lópez ML, Fletes-vargas G, Espinosa-andrews H, Rodríguez-rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal 2021;145:110176. [DOI: 10.1016/j.eurpolymj.2020.110176] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 46.0] [Reference Citation Analysis]
22 Calikoglu Koyuncu AC, Dogan E, Uzun M, Gunduz O. An Overview of the Use of Dental Stem Cells and Polycaprolactone Scaffolds in Tissue Engineering. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_6] [Reference Citation Analysis]
23 Murali VP, Sundararaju P. Chitosan Nanofibers in Regenerative Medicine. Advances in Polymer Science 2021. [DOI: 10.1007/12_2021_91] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. International Journal of Biological Macromolecules 2020;161:977-98. [DOI: 10.1016/j.ijbiomac.2020.06.113] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 16.5] [Reference Citation Analysis]
25 Boni R, Ali A, Giteru SG, Shavandi A, Clarkson AN. Silk fibroin nanoscaffolds for neural tissue engineering. J Mater Sci Mater Med 2020;31:81. [PMID: 32857207 DOI: 10.1007/s10856-020-06422-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
26 Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020;9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 28.5] [Reference Citation Analysis]
27 Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, Ismail AF, RamaKrishna S, Berto F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials (Basel) 2020;13:E2663. [PMID: 32545256 DOI: 10.3390/ma13112663] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
28 Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif Cells Nanomed Biotechnol 2019;47:3524-39. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 24.0] [Reference Citation Analysis]
29 Hossain MR, Mallik AK, Rahman MM. Fundamentals of chitosan for biomedical applications. Handbook of Chitin and Chitosan. Elsevier; 2020. pp. 199-230. [DOI: 10.1016/b978-0-12-817966-6.00007-8] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Hollands P. Application of Nanomaterials in Stem Cells, Tissue Engineering and Regenerative Medicine. Applications of Nanomaterials in Human Health 2020. [DOI: 10.1007/978-981-15-4802-4_5] [Reference Citation Analysis]
31 Qian Y, Yao Z, Wang X, Cheng Y, Fang Z, Yuan WE, Fan C, Ouyang Y. (-)-Epigallocatechin gallate-loaded polycaprolactone scaffolds fabricated using a 3D integrated moulding method alleviate immune stress and induce neurogenesis. Cell Prolif 2020;53:e12730. [PMID: 31746040 DOI: 10.1111/cpr.12730] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
32 Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2020;35:331-50. [PMID: 31721139 DOI: 10.14670/HH-18-184] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
33 Yadid M, Feiner R, Dvir T. Gold Nanoparticle-Integrated Scaffolds for Tissue Engineering and Regenerative Medicine. Nano Lett 2019;19:2198-206. [DOI: 10.1021/acs.nanolett.9b00472] [Cited by in Crossref: 104] [Cited by in F6Publishing: 107] [Article Influence: 34.7] [Reference Citation Analysis]
34 Wang L, Chang J, Qu Y, Qiu R. Combination therapy comprising irreversible electroporation and hydroxycamptothecin loaded electrospun membranes to treat rabbit VX2 subcutaneous cancer. Biomed Microdevices 2018;20:88. [PMID: 30310996 DOI: 10.1007/s10544-018-0336-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]