BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wright AJ, Luo J. A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective. J Mater Sci 2020;55:9812-27. [DOI: 10.1007/s10853-020-04583-w] [Cited by in Crossref: 76] [Cited by in F6Publishing: 81] [Article Influence: 25.3] [Reference Citation Analysis]
Number Citing Articles
1 Du B, Huang X, Wang A, Liu Y, Cheng Y. Structure evolutions of the polymer derived medium-/high-entropy metal carbides. Journal of Alloys and Compounds 2023;939:168737. [DOI: 10.1016/j.jallcom.2023.168737] [Reference Citation Analysis]
2 Wang YL, Lin GQ, Yang LX, Li JZ, Zhang XF, Liu HJ, Zeng CL. Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics. Journal of Alloys and Compounds 2023;938:168551. [DOI: 10.1016/j.jallcom.2022.168551] [Reference Citation Analysis]
3 Zhang D, Park J, Xu B, Liu C, Li W, Liu X, Qi Y, Luo J. Unusual aliovalent doping effects on oxygen non-stoichiometry in medium-entropy compositionally complex perovskite oxides. Dalton Trans 2023;52:1082-8. [PMID: 36602165 DOI: 10.1039/d2dt03759a] [Reference Citation Analysis]
4 Ponti A, Triolo C, Petrovičovà B, Ferretti AM, Pagot G, Xu W, Di Noto V, Pinna N, Santangelo S. Structure and magnetism of electrospun porous high-entropy (Cr(1/5)Mn(1/5)Fe(1/5)Co(1/5)Ni(1/5))(3)O(4), (Cr(1/5)Mn(1/5)Fe(1/5)Co(1/5)Zn(1/5))(3)O(4) and (Cr(1/5)Mn(1/5)Fe(1/5)Ni(1/5)Zn(1/5))(3)O(4) spinel oxide nanofibers. Phys Chem Chem Phys 2023;25:2212-26. [PMID: 36594637 DOI: 10.1039/d2cp05142g] [Reference Citation Analysis]
5 Chen G, Li C, Jia H, Li H, Li S, Gong B, An L, Chen K. Formation and properties of Ca2+ substituted (Ce0.2Zr0.2Ti0.2Sn0.2Hf0.2)O2 high-entropy ceramics. Journal of the European Ceramic Society 2023. [DOI: 10.1016/j.jeurceramsoc.2023.01.012] [Reference Citation Analysis]
6 Guo W, Hu J, Fang W, Ye Y, Zhang S, Bai S. A novel strategy for rapid fabrication of continuous carbon fiber reinforced (TiZrHfNbTa)C high-entropy ceramic composites: high-entropy alloy in-situ reactive melt infiltration. Journal of the European Ceramic Society 2023. [DOI: 10.1016/j.jeurceramsoc.2023.01.019] [Reference Citation Analysis]
7 Luo J. Computing grain boundary “phase” diagrams. Interdisciplinary Materials 2023;2:137-160. [DOI: 10.1002/idm2.12067] [Reference Citation Analysis]
8 Feltrin AC, Xing Q, Akinwekomi AD, Waseem OA, Akhtar F. Review of Novel High-Entropy Protective Materials: Wear, Irradiation, and Erosion Resistance Properties. Entropy (Basel) 2022;25. [PMID: 36673214 DOI: 10.3390/e25010073] [Reference Citation Analysis]
9 Su L, Chen X, Xu L, Eldred T, Smith J, DellaRova C, Wang H, Gao W. Visualizing the Formation of High-Entropy Fluorite Oxides from an Amorphous Precursor at Atomic Resolution. ACS Nano 2022;16:21397-406. [PMID: 36454037 DOI: 10.1021/acsnano.2c09760] [Reference Citation Analysis]
10 Jabeen N, Hussain A, Qaiser MA, Ali J, Rehman A, Sfina N, Ali GA, Tirth V. Enhanced Energy Storage Performance by Relaxor Highly Entropic (Ba0.2Na0.2K0.2La0.2Bi0.2)TiO3 and (Ba0.2Na0.2K0.2Mg0.2Bi0.2)TiO3 Ferroelectric Ceramics. Applied Sciences 2022;12:12933. [DOI: 10.3390/app122412933] [Reference Citation Analysis]
11 Teplonogova MA, Yapryntsev AD, Baranchikov AE, Ivanov VK. High-Entropy Layered Rare Earth Hydroxides. Inorg Chem 2022;61:19817-27. [PMID: 36417701 DOI: 10.1021/acs.inorgchem.2c02950] [Reference Citation Analysis]
12 Pikalova EY, Kalinina EG, Pikalova NS, Filonova EA. High-Entropy Materials in SOFC Technology: Theoretical Foundations for Their Creation, Features of Synthesis, and Recent Achievements. Materials (Basel) 2022;15. [PMID: 36556589 DOI: 10.3390/ma15248783] [Reference Citation Analysis]
13 Handley CM, Gao E, Heath JP, Sinclair DC, Freeman CL. Understanding the Structure-Dielectric Property Relationships of (Ba0.8Ca0.2)TiO3-Bi(Mg0.5Ti0.5)O3 Perovskites. Acta Materialia 2022. [DOI: 10.1016/j.actamat.2022.118649] [Reference Citation Analysis]
14 Ning Y, Pu Y, Zhang Q, Zhou S, Wu C, Zhang L, Shi Y, Sun Z. Achieving high energy storage properties in perovskite oxide via high-entropy design. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.12.073] [Reference Citation Analysis]
15 Vega H, Qin M, Luo J. Thermodynamics of Dual-Phase Compositionally Complex Ceramics: A Case Study of Ultrahigh-Entropy Fluorite-Bixbyite Refractory Oxides. Journal of the European Ceramic Society 2022. [DOI: 10.1016/j.jeurceramsoc.2022.12.033] [Reference Citation Analysis]
16 Zhang D, Chen Y, Vega H, Feng T, Yu D, Everett M, Neuefeind J, An K, Chen R, Luo J. Long- and short-range orders in 10-component compositionally complex ceramics. Advanced Powder Materials 2022. [DOI: 10.1016/j.apmate.2022.100098] [Reference Citation Analysis]
17 Brahlek M, Gazda M, Keppens V, Mazza AR, Mccormack SJ, Mielewczyk-gryń A, Musico B, Page K, Rost CM, Sinnott SB, Toher C, Ward TZ, Yamamoto A. What is in a name: Defining “high entropy” oxides. APL Materials 2022;10:110902. [DOI: 10.1063/5.0122727] [Reference Citation Analysis]
18 Zhang X, Li N, Chen X, Stroup M, Lu Y, Cui B. Direct selective laser sintering of high-entropy carbide ceramics. Journal of Materials Research 2022. [DOI: 10.1557/s43578-022-00766-0] [Reference Citation Analysis]
19 Kavak S, Bayrak KG, Mansoor M, Kaba M, Ayas E, Balcı-çağıran Ö, Derin B, Öveçoğlu ML, Ağaoğulları D. First principles calculations and synthesis of multi-phase (HfTiWZr)B2 high entropy diboride ceramics: Microstructural, mechanical and thermal characterization. Journal of the European Ceramic Society 2022. [DOI: 10.1016/j.jeurceramsoc.2022.10.047] [Reference Citation Analysis]
20 Wen Z, Tang Z, Meng H, Chu Y. A promising new class of high-entropy ceramics: High-entropy oxycarbides with good oxidation resistance. Corrosion Science 2022;207:110574. [DOI: 10.1016/j.corsci.2022.110574] [Reference Citation Analysis]
21 Wang Y, Jin Y, Wei T, Wang Z, Cao G, Ding Z, Liu Z, Ouyang J, Wang Y, Wang Y. Size disorder: A descriptor for predicting the single- or dual-phase formation in multi-component rare earth zirconates. Journal of Alloys and Compounds 2022;918:165636. [DOI: 10.1016/j.jallcom.2022.165636] [Reference Citation Analysis]
22 Wu J, Ma X, Hu X, Yan L, Hou F, Liu J, Guo A. New class of high-entropy pseudobrookite titanate with excellent thermal stability, low thermal expansion coefficient, and low thermal conductivity. J Adv Ceram 2022;11:1654-1670. [DOI: 10.1007/s40145-022-0638-7] [Reference Citation Analysis]
23 Xia M, Lu N, Chen Y, Shen B, Liang X. Microstructures and mechanical properties of (Nb0.25Mo0.25Ta0.25W0.25)C and (Nb0.2Mo0.2Ta0.2W0.2Hf0.2)C high-entropy carbide ceramics produced by arc melting. International Journal of Refractory Metals and Hard Materials 2022;107:105859. [DOI: 10.1016/j.ijrmhm.2022.105859] [Reference Citation Analysis]
24 Lou Z, Xu X, Zhang P, Gong L, Chen Q, Xu J, Rydosz A, Gao F. Microstructure and dielectric properties of high-entropy Sr0.9La0.1MeO3 (Me: Zr, Sn, Ti, Hf, Mn, Nb) perovskite ceramics. Journal of Materials Research and Technology 2022. [DOI: 10.1016/j.jmrt.2022.09.081] [Reference Citation Analysis]
25 Wang D, Mirovoy YA, Burlachenko AG, Buyakov AS, Dedova ES, Buyakova SP. Phase Evolution in Multicomponent Ceramic Solid Solutions. Russ Phys J. [DOI: 10.1007/s11182-022-02634-0] [Reference Citation Analysis]
26 Musicó BL, Smith JP, Wright Q, Sickafus K, Mandrus DG, Keppens V. Synthesis, elastic properties, and high-temperature stability of multicomponent spinel oxide. MRS Communications. [DOI: 10.1557/s43579-022-00210-8] [Reference Citation Analysis]
27 Sun Y, Mao H, Shen P. Inhibition of hotspot formation by alumina addition in flash sintering of (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 high-entropy ceramic. Journal of the European Ceramic Society 2022. [DOI: 10.1016/j.jeurceramsoc.2022.08.015] [Reference Citation Analysis]
28 Yu L, Zeng K, Li C, Lin X, Liu H, Shi W, Qiu H, Yuan Y, Yao Y. High‐entropy alloy catalysts: From bulk to nano toward highly efficient carbon and nitrogen catalysis. Carbon Energy. [DOI: 10.1002/cey2.228] [Reference Citation Analysis]
29 Zhang D, Chen Y, Feng T, Yu D, An K, Chen R, Luo J. Discovery of a reversible redox-induced order-disorder transition in a 10-component compositionally complex ceramic. Scripta Materialia 2022;215:114699. [DOI: 10.1016/j.scriptamat.2022.114699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Chu Y, Yu R, He G, Zhang T, Dong H, Deng S, Li J. Combustion synthesis of high-entropy carbide nanoparticles for tetracycline degradation via persulfate activation. Sci China Mater 2022. [DOI: 10.1007/s40843-022-2080-5] [Reference Citation Analysis]
31 Kretschmer A, Kirnbauer A, Pitthan E, Primetzhofer D, Yalamanchili K, Rudigier H, Mayrhofer PH. High-entropy alloy inspired development of compositionally complex superhard (Hf,Ta,Ti,V,Zr)-B-N coatings. Materials & Design 2022;218:110695. [DOI: 10.1016/j.matdes.2022.110695] [Reference Citation Analysis]
32 Wang Y, Jin Y, Ding Z, Cao G, Liu Z, Wei T, Ouyang J, Wang Y, Wang Y. Microstructure and electrical properties of new high-entropy rare-earth zirconates. Journal of Alloys and Compounds 2022;906:164331. [DOI: 10.1016/j.jallcom.2022.164331] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
33 Qin M, Shivakumar S, Lei T, Gild J, Hessong EC, Wang H, Vecchio KS, Rupert TJ, Luo J. Processing-dependent stabilization of a dissimilar rare-earth boride in high-entropy (Ti0.2Zr0.2Hf0.2Ta0.2Er0.2)B2 with enhanced hardness and grain boundary segregation. Journal of the European Ceramic Society 2022. [DOI: 10.1016/j.jeurceramsoc.2022.05.034] [Reference Citation Analysis]
34 Luo X, Luo L, Zhao X, Cai H, Duan S, Xu C, Huang S, Jin H, Hou S. Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties. Journal of the European Ceramic Society 2022;42:2391-9. [DOI: 10.1016/j.jeurceramsoc.2021.12.080] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
35 Zhao S. Defect energetics and stacking fault formation in high-entropy carbide ceramics. Journal of the European Ceramic Society 2022. [DOI: 10.1016/j.jeurceramsoc.2022.05.046] [Reference Citation Analysis]
36 Wang X, Li X, Fan H, Miao M, Zhang Y, Guo W, Fu Y. Advances of entropy-stabilized homologous compounds for electrochemical energy storage. Journal of Energy Chemistry 2022;67:276-89. [DOI: 10.1016/j.jechem.2021.09.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
37 Shivakumar S, Qin M, Zhang D, Hu C, Yan Q, Luo J. A new type of compositionally complex M5Si3 silicides: Cation ordering and unexpected phase stability. Scripta Materialia 2022;212:114557. [DOI: 10.1016/j.scriptamat.2022.114557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Ma M, Hu X, Meng H, Zhao Z, Chang K, Chu Y. High-entropy metal carbide nanowires. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Zhang F, Cheng F, Cheng C, Guo M, Liu Y, Miao Y, Gao F, Wang X. Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides. Journal of Materials Science & Technology 2022;105:122-30. [DOI: 10.1016/j.jmst.2021.07.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Qin M, Vega H, Zhang D, Adapa S, Wright AJ, Chen R, Luo J. 21-Component compositionally complex ceramics: Discovery of ultrahigh-entropy weberite and fergusonite phases and a pyrochlore-weberite transition. J Adv Ceram. [DOI: 10.1007/s40145-022-0575-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Xing Y, Dan W, Fan Y, Li X. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method. Journal of Materials Science & Technology 2022;103:215-20. [DOI: 10.1016/j.jmst.2021.06.057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
42 Zyryanov V, Ulihin A. Understanding δ-Bi2O3 fluorite degradation mechanism and related solutions for promising applications in distributed multigeneration. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.02.242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Hirai T, Yagi K, Nakai K, Okamoto K, Murai D, Okamoto H. High-entropy polymer blends utilizing in situ exchange reaction. Polymer 2022;240:124483. [DOI: 10.1016/j.polymer.2021.124483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Hedman D, Feltrin AC, Miyamoto Y, Akhtar F. Ab initio aided design of novel quaternary, quinary and senary high-entropy borocarbides. J Mater Sci 2022;57:422-43. [DOI: 10.1007/s10853-021-06600-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Reddy JA, Chowdhury A. Process-structure correlations in complex A2B2O7 systems: Nanoparticles and ceramics. Pyrochlore Ceramics 2022. [DOI: 10.1016/b978-0-323-90483-4.00005-2] [Reference Citation Analysis]
46 Yuan K, Cui Q, Li J, Jin X, Li C, Ji X, Tian Z, Wang X. Compositionally complex (Ca, Sr, Ba)ZrO3 fibrous membrane with excellent structure stability and NIR reflectance. Materials Characterization 2022;183:111631. [DOI: 10.1016/j.matchar.2021.111631] [Reference Citation Analysis]
47 Wen Y, Liu Y. Processing and microstructure of a fluorite high-entropy oxide (Zr0.2Ce0.2Hf0.2Y0.2Al0.2)O2-δ. Ceramics International 2022;48:2546-54. [DOI: 10.1016/j.ceramint.2021.10.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Wang D, Mirovoy YA, Burlachenko AG, Buyakov AS, Dedova ES, Buyakova SP. Structure Formation in Equimolar Mixture of HfC–ZrC–TiC–NbC Carbides. Russ Phys J 2021;64:1191-7. [DOI: 10.1007/s11182-021-02443-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Liu D, Wang Y, Zhou F, Xu B, Lv B. A novel high-entropy (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity. Ceramics International 2021;47:29960-8. [DOI: 10.1016/j.ceramint.2021.07.170] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
50 Vayer F, Decorse C, Bérardan D, Dragoe N. New entropy-stabilized oxide with pyrochlore structure: Dy2(Ti0.2Zr0.2Hf0.2Ge0.2Sn0.2)2O7. Journal of Alloys and Compounds 2021;883:160773. [DOI: 10.1016/j.jallcom.2021.160773] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
51 Matović B, Zagorac D, Cvijović-alagić I, Zagorac J, Butulija S, Erčić J, Hanzel O, Sedlák R, Lisnichuk M, Tatarko P. Fabrication and characterization of high entropy pyrochlore ceramics. Boletín de la Sociedad Española de Cerámica y Vidrio 2021. [DOI: 10.1016/j.bsecv.2021.11.002] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Feltrin AC, Hedman D, Akhtar F. Transformation of metastable dual-phase (Ti 0.25 V 0.25 Zr 0.25 Hf 0.25 )B 2 to stable high-entropy single-phase boride by thermal annealing. Appl Phys Lett 2021;119:161905. [DOI: 10.1063/5.0066698] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
53 Akrami S, Edalati P, Fuji M, Edalati K. High-entropy ceramics: Review of principles, production and applications. Materials Science and Engineering: R: Reports 2021;146:100644. [DOI: 10.1016/j.mser.2021.100644] [Cited by in Crossref: 56] [Cited by in F6Publishing: 68] [Article Influence: 28.0] [Reference Citation Analysis]
54 Liu B, Zhao J, Liu Y, Xi J, Li Q, Xiang H, Zhou Y. Application of high-throughput first-principles calculations in ceramic innovation. Journal of Materials Science & Technology 2021;88:143-57. [DOI: 10.1016/j.jmst.2021.01.071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
55 Zyryanov V, Petrov S, Ulihin A. Mechanically activated synthesis, characterization and conducting properties of complex perovskites for Ag-based metal-matrix nanocomposites. Ceramics International 2021;47:29499-503. [DOI: 10.1016/j.ceramint.2021.07.118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Mellor WM, Kaufmann K, Dippo OF, Figueroa SD, Schrader GD, Vecchio KS. Development of ultrahigh-entropy ceramics with tailored oxidation behavior. Journal of the European Ceramic Society 2021;41:5791-800. [DOI: 10.1016/j.jeurceramsoc.2021.05.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
57 Edalati K, Li H, Kilmametov A, Floriano R, Borchers C. High-Pressure Torsion for Synthesis of High-Entropy Alloys. Metals 2021;11:1263. [DOI: 10.3390/met11081263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
58 Yao Y, Yang F, Zhao X. Multicomponent high‐entropy Zr‐Y‐Yb‐Ta‐Nb‐O oxides for next‐generation thermal barrier coating applications. J Am Ceram Soc 2022;105:35-43. [DOI: 10.1111/jace.18053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Dada M, Popoola P, Mathe N. Recent advances of high entropy alloys for aerospace applications: a review. WJE 2021;ahead-of-print. [DOI: 10.1108/wje-01-2021-0040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Cedervall J, Clulow R, Boström HL, Joshi DC, Andersson MS, Mathieu R, Beran P, Smith RI, Tseng J, Sahlberg M, Berastegui P, Shafeie S. Phase stability and structural transitions in compositionally complex LnMO3 perovskites. Journal of Solid State Chemistry 2021;300:122213. [DOI: 10.1016/j.jssc.2021.122213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Lun H, Zeng Y, Xiong X, Ye Z, Zhang Z, Li X, Chen H, Liu Y. Oxidation behavior of non-stoichiometric (Zr,Hf,Ti)Cx carbide solid solution powders in air. J Adv Ceram 2021;10:741-57. [DOI: 10.1007/s40145-021-0469-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
62 Tan Y, Teng Z, Chen C, Jia P, Zhou X, Zhang H. Compositional effect on mechanical properties of transition-metal carbide solid solutions. Ceramics International 2021;47:16882-90. [DOI: 10.1016/j.ceramint.2021.02.264] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
63 Dudnik O, Lakiza S, Grechanyuk I, Red’ko V, Makudera A, Glabay M, Marek I, Ruban A, Grechanyuk M. Composite Ceramics for Thermal Barrier Coatings Produced From ZrO2 Doped with Yttrium-Subgroup Rare-Earth Metal Oxides. Powder Metall Met Ceram 2021;59:672-80. [DOI: 10.1007/s11106-021-00202-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
64 Zhang X, Xue L, Yang F, Shao Z, Zhang H, Zhao Z, Wang K. (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3: A novel conductive porous high-entropy ceramic synthesized by the sol-gel method. Journal of Alloys and Compounds 2021;863:158763. [DOI: 10.1016/j.jallcom.2021.158763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Peng Z, Sun W, Xiong X, Zhang H, Guo F, Li J. Novel refractory high-entropy ceramics: Transition metal carbonitrides with superior ablation resistance. Corrosion Science 2021;184:109359. [DOI: 10.1016/j.corsci.2021.109359] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
66 Wang WY, Zhang Y, Liaw PK. Editorial: Data-Driven Integrated Computational Materials Engineering for High-Entropy Materials. Front Mater 2021;8. [DOI: 10.3389/fmats.2021.664829] [Reference Citation Analysis]
67 Xiang H, Xing Y, Dai F, Wang H, Su L, Miao L, Zhang G, Wang Y, Qi X, Yao L, Wang H, Zhao B, Li J, Zhou Y. High-entropy ceramics: Present status, challenges, and a look forward. J Adv Ceram 2021;10:385-441. [DOI: 10.1007/s40145-021-0477-y] [Cited by in Crossref: 181] [Cited by in F6Publishing: 202] [Article Influence: 90.5] [Reference Citation Analysis]
68 Albedwawi SH, Aljaberi A, Haidemenopoulos GN, Polychronopoulou K. High entropy oxides-exploring a paradigm of promising catalysts: A review. Materials & Design 2021;202:109534. [DOI: 10.1016/j.matdes.2021.109534] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 26.5] [Reference Citation Analysis]
69 Zhu J, Meng X, Zhang P, Li Z, Xu J, Reece MJ, Gao F. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity. Journal of the European Ceramic Society 2021;41:2861-9. [DOI: 10.1016/j.jeurceramsoc.2020.11.047] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
70 Jiang B, Bridges CA, Unocic RR, Pitike KC, Cooper VR, Zhang Y, Lin DY, Page K. Probing the Local Site Disorder and Distortion in Pyrochlore High-Entropy Oxides. J Am Chem Soc 2021;143:4193-204. [PMID: 33352040 DOI: 10.1021/jacs.0c10739] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
71 Barbarossa S, Orrù R, Garroni S, Licheri R, Cao G. Ultra high temperature high-entropy borides: Effect of graphite addition on oxides removal and densification behaviour. Ceramics International 2021;47:6220-31. [DOI: 10.1016/j.ceramint.2020.10.200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
72 Chen L, Wang Y, Hu M, Zhang L, Wang J, Zhang Z, Liang X, Guo J, Feng J. Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE 3 NbO 7 via entropy engineering. Appl Phys Lett 2021;118:071905. [DOI: 10.1063/5.0037373] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
73 Sarkar A, Kruk R, Hahn H. Magnetic properties of high entropy oxides. Dalton Trans 2021;50:1973-82. [PMID: 33443275 DOI: 10.1039/d0dt04154h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
74 Mccormack SJ, Navrotsky A. Thermodynamics of high entropy oxides. Acta Materialia 2021;202:1-21. [DOI: 10.1016/j.actamat.2020.10.043] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 24.5] [Reference Citation Analysis]
75 Zhao S. Lattice distortion in high‐entropy carbide ceramics from first‐principles calculations. J Am Ceram Soc 2021;104:1874-86. [DOI: 10.1111/jace.17600] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
76 Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B. High-entropy energy materials: challenges and new opportunities. Energy Environ Sci 2021;14:2883-905. [DOI: 10.1039/d1ee00505g] [Cited by in Crossref: 83] [Cited by in F6Publishing: 93] [Article Influence: 41.5] [Reference Citation Analysis]
77 Turcer LR, Sengupta A, Padture NP. Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings. Scripta Materialia 2021;191:40-5. [DOI: 10.1016/j.scriptamat.2020.09.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 12.5] [Reference Citation Analysis]
78 Qin M, Yan Q, Liu Y, Luo J. A new class of high-entropy M3B4 borides. J Adv Ceram 2021;10:166-72. [DOI: 10.1007/s40145-020-0438-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
79 Liu J, Shao G, Liu D, Chen K, Wang K, Ma B, Ren K, Wang Y. Design and synthesis of chemically complex ceramics from the perspective of entropy. Materials Today Advances 2020;8:100114. [DOI: 10.1016/j.mtadv.2020.100114] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
80 Nisar A, Zhang C, Boesl B, Agarwal A. A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics. Ceramics International 2020;46:25845-53. [DOI: 10.1016/j.ceramint.2020.07.066] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 7.7] [Reference Citation Analysis]
81 Sen A, Hasan MK, Munna AH, Roy DJ, Hassan MRA, Gulshan F. Structural, optical, and magnetic properties of compositionally complex bismuth ferrite (BiFeO3). J Mater Sci: Mater Electron 2020;31:19713-19727. [DOI: 10.1007/s10854-020-04497-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Lipomi DJ, Fenning DP, Ong SP, Shah NJ, Tao AR, Zhang L. Exploring Frontiers in Research and Teaching: NanoEngineering and Chemical Engineering at UC San Diego. ACS Nano 2020;14:9203-16. [PMID: 32806076 DOI: 10.1021/acsnano.0c06256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]