BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ogundare SA, van Zyl WE. A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 2019;26:6489-528. [DOI: 10.1007/s10570-019-02580-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 51] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Gabrielli V, Frasconi M. Cellulose-Based Functional Materials for Sensing. Chemosensors 2022;10:352. [DOI: 10.3390/chemosensors10090352] [Reference Citation Analysis]
2 Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022;:1-45. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Reference Citation Analysis]
3 Campu A, Muresan I, Craciun A, Cainap S, Astilean S, Focsan M. Cardiac Troponin Biosensor Designs: Current Developments and Remaining Challenges. IJMS 2022;23:7728. [DOI: 10.3390/ijms23147728] [Reference Citation Analysis]
4 Kissell LN, Quady TK, Durastanti D, Springer S, Kenmotsu J, Clare TL. A multi-analytical approach to identify red colorants on woodblock prints attributed to Suzuki Harunobu. Herit Sci 2022;10. [DOI: 10.1186/s40494-022-00731-4] [Reference Citation Analysis]
5 Zhang Q, Zhang Y, Chen H, Zhang L, Li P, Xiao H, Wu W. One-dimensional nanohybrids based on cellulose nanocrystals and their SERS performance. Carbohydrate Polymers 2022;284:119140. [DOI: 10.1016/j.carbpol.2022.119140] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Fernandes T, Martins NCT, Fateixa S, Nogueira HIS, Daniel-da-Silva AL, Trindade T. Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates. J Colloid Interface Sci 2022;612:342-54. [PMID: 34998194 DOI: 10.1016/j.jcis.2021.12.167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Gomez –Caballero L, Pichardo-molina J, Basurto-islas G. Cellulose dialysis membrane tubing doped with gold nanoparticles as SERS substrate. Materials Letters 2022;313:131718. [DOI: 10.1016/j.matlet.2022.131718] [Reference Citation Analysis]
8 Zub K, Hoeppener S, Schubert US. Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical and Diagnostic Applications. Adv Mater 2022;:e2105015. [PMID: 35338719 DOI: 10.1002/adma.202105015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS Photonics 2022;9:333-50. [PMID: 35211644 DOI: 10.1021/acsphotonics.1c01934] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
10 Rahman A, Kang S, Wang W, Huang Q, Kim I, Vikesland PJ. Lectin-Modified Bacterial Cellulose Nanocrystals Decorated with Au Nanoparticles for Selective Detection of Bacteria Using Surface-Enhanced Raman Scattering Coupled with Machine Learning. ACS Appl Nano Mater 2022;5:259-68. [DOI: 10.1021/acsanm.1c02760] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Xie L, Zeng H, Zhu J, Zhang Z, Sun H, Xia W, Du Y. State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Res . [DOI: 10.1007/s12274-021-4017-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Hu F, Li Y, Zhang Y, Li Y, Li H, Ai S. Flexible Ag NCs/CNFs film for colorimetric and SERS dual-mode ultrasensitive detection of mercury ions (II). Vibrational Spectroscopy 2022;118:103342. [DOI: 10.1016/j.vibspec.2022.103342] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Nagamura T, Kawai H, Matsuda N. Enhancement effects of metal nanostructures and metal nanofilms on various emissions by interactions of photons with materials or molecules. Molecular Crystals and Liquid Crystals. [DOI: 10.1080/15421406.2021.1946969] [Reference Citation Analysis]
14 Visaveliya NR, Mazetyte‐stasinskiene R, Köhler JM. General Background of SERS Sensing and Perspectives on Polymer‐Supported Plasmon‐Active Multiscale and Hierarchical Sensor Particles. Advanced Optical Materials 2022;10:2102001. [DOI: 10.1002/adom.202102001] [Reference Citation Analysis]
15 Wang K, Li Z, Li J, Lin H. Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends in Food Science & Technology 2021;118:490-504. [DOI: 10.1016/j.tifs.2021.10.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
16 Zhou W, Ni X, Xie C, Fan Q, Liu D. Advanced technologies for single-cell in situ protein profiling. Sci China Chem 2022;65:48-67. [DOI: 10.1007/s11426-021-1110-7] [Reference Citation Analysis]
17 Jeon Y, Kim D, Kwon G, Lee K, Oh CS, Kim UJ, You J. Detection of nanoplastics based on surface-enhanced Raman scattering with silver nanowire arrays on regenerated cellulose films. Carbohydr Polym 2021;272:118470. [PMID: 34420729 DOI: 10.1016/j.carbpol.2021.118470] [Reference Citation Analysis]
18 Liu S, Tian X, Guo J, Kong X, Xu L, Yu Q, Wang AX. Multi-functional plasmonic fabrics: A flexible SERS substrate and anti-counterfeiting security labels with tunable encoding information. Applied Surface Science 2021;567:150861. [DOI: 10.1016/j.apsusc.2021.150861] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
19 Zhang Y, Zhang H, Li D, Abbas Naqvi SMZ, Abdulraheem MI, Su R, Ahmed S, Hu J. Surface-enhanced Raman spectroscopy for the quantitative detection of abscisic acid in wheat leaves using silver coated gold nanocomposites. Spectroscopy Letters 2021;54:732-41. [DOI: 10.1080/00387010.2021.1995439] [Reference Citation Analysis]
20 Liu S, Guo J, Hinestroza J, Kong X, Yu Q. Fabrication of plasmonic absorbent cotton as a SERS substrate for adsorption and detection of harmful ingredients in food. Microchemical Journal 2021;170:106662. [DOI: 10.1016/j.microc.2021.106662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Chin C, Chen C, Chen X, Yen H, Hsien H, Young J, Chen Y. High sensitivity enhancement of multi-shaped silver-nanoparticle-decorated hydrophilic PVDF-based SERS substrates using solvating pretreatment. Sensors and Actuators B: Chemical 2021;347:130614. [DOI: 10.1016/j.snb.2021.130614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Kim D, Lee K, Jeon Y, Kwon G, Kim U, Oh C, Kim J, You J. Plasmonic nanoparticle-analyte nanoarchitectronics combined with efficient analyte deposition method on regenerated cellulose-based SERS platform. Cellulose 2021;28:11493-502. [DOI: 10.1007/s10570-021-04283-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Kumar S, Taneichi T, Fukuoka T, Namura K, Suzuki M. Study on transport of molecules in gel by surface-enhanced Raman spectroscopy. Cellulose 2021;28:10803-13. [DOI: 10.1007/s10570-021-04249-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Liu H, He Y, Cao K. Flexible Surface‐Enhanced Raman Scattering Substrates: A Review on Constructions, Applications, and Challenges. Adv Mater Interfaces 2021;8:2100982. [DOI: 10.1002/admi.202100982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Hassan MM, Xu Y, Zareef M, Li H, Rong Y, Chen Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: a review. Crit Rev Food Sci Nutr 2021;:1-22. [PMID: 34565253 DOI: 10.1080/10408398.2021.1980765] [Reference Citation Analysis]
26 Kim D, Kim J, Henzie J, Ko Y, Lim H, Kwon G, Na J, Kim H, Yamauchi Y, You J. Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chemical Engineering Journal 2021;419:129445. [DOI: 10.1016/j.cej.2021.129445] [Cited by in Crossref: 3] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
27 Wasim M, Shi F, Liu J, Khan MR, Farooq A, Sanbhal N, Alfred M, Xin L, Yajun C, Zhao X. Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage devices. J Mater Sci 2021;56:14448-86. [DOI: 10.1007/s10853-021-06215-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
28 Pagano R, Ottolini M, Valli L, Bettini S, Giancane G. Ag nanodisks decorated filter paper as a SERS platform for nanomolar tetracycline detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;624:126787. [DOI: 10.1016/j.colsurfa.2021.126787] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
29 Xu J, Shang S, Gao W, Zeng P, Jiang S. Ag@ZIF-67 decorated cotton fabric as flexible, stable and sensitive SERS substrate for label-free detection of phenol-soluble modulin. Cellulose 2021;28:7389-404. [DOI: 10.1007/s10570-021-03971-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Martins NC, Fateixa S, Fernandes T, Nogueira HI, Trindade T. Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Appl Nano Mater 2021;4:4484-95. [DOI: 10.1021/acsanm.1c00112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
31 Xu F, Xuan M, Ben Z, Shang W, Ma G. Surface enhanced Raman scattering analysis with filter-based enhancement substrates: A mini review. Reviews in Analytical Chemistry 2021;40:75-92. [DOI: 10.1515/revac-2021-0126] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Hu B, Pu H, Sun D. Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends in Food Science & Technology 2021;110:304-20. [DOI: 10.1016/j.tifs.2021.02.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
33 Zhang D, Pu H, Huang L, Sun D. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends in Food Science & Technology 2021;109:690-701. [DOI: 10.1016/j.tifs.2021.01.058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
34 Hassan MM, Jiao T, Ahmad W, Yi X, Zareef M, Ali S, Li H, Chen Q. Cellulose paper-based SERS sensor for sensitive detection of 2,4-D residue levels in tea coupled uninformative variable elimination-partial least squares. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021;248:119198. [DOI: 10.1016/j.saa.2020.119198] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
35 Hu X, Yang B, Wen X, Su J, Jia B, Fu F, Zhang Y, Yu Q, Liu X. One-Pot Synthesis of a Three-Dimensional Au-Decorated Cellulose Nanocomposite as a Surface-Enhanced Raman Scattering Sensor for Selective Detection and in Situ Monitoring. ACS Sustainable Chem Eng 2021;9:3324-36. [DOI: 10.1021/acssuschemeng.0c09296] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Siripongpreda T, Rodthongkum N, Ummartyotin S. A critical review on cellulose wastes as the novel substrates for colorimetric and electrochemical sensors. Current Research in Green and Sustainable Chemistry 2021;4:100190. [DOI: 10.1016/j.crgsc.2021.100190] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Liu Y, Zhu W, Hu J, Shen A. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. Nanoscale Adv 2021;3:6568-79. [DOI: 10.1039/d1na00464f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Chen J, Huang M, Kong L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Applied Surface Science 2020;533:147454. [DOI: 10.1016/j.apsusc.2020.147454] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
39 Shan J, Zhang Y, Wang J, Ren T, Jin M, Wang X. Microextraction based on microplastic followed by SERS for on-site detection of hydrophobic organic contaminants, an indicator of seawater pollution. Journal of Hazardous Materials 2020;400:123202. [DOI: 10.1016/j.jhazmat.2020.123202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Wu Y, Xie Y, Zhong F, Gao J, Yao J. Fabrication of bimetallic Hofmann-type metal-organic Frameworks@Cellulose aerogels for efficient iodine capture. Microporous and Mesoporous Materials 2020;306:110386. [DOI: 10.1016/j.micromeso.2020.110386] [Cited by in Crossref: 17] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
41 Heleg-Shabtai V, Sharabi H, Zaltsman A, Ron I, Pevzner A. Surface-enhanced Raman spectroscopy (SERS) for detection of VX and HD in the gas phase using a hand-held Raman spectrometer. Analyst 2020;145:6334-41. [PMID: 32716417 DOI: 10.1039/d0an01170c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
42 Ying B, Park S, Chen L, Dong X, Young EWK, Liu X. NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications. Lab Chip 2020;20:3322-33. [PMID: 32766659 DOI: 10.1039/d0lc00226g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
43 Hu X, Xu X, Fu F, Yang B, Zhang J, Zhang Y, Binte Touhid SS, Liu L, Dong Y, Liu X, Yao J. Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity. Carbohydr Polym 2020;248:116777. [PMID: 32919567 DOI: 10.1016/j.carbpol.2020.116777] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
44 Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04358-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
45 Rusin CJ, El Bakkari M, Du R, Boluk Y, Mcdermott MT. Plasmonic Cellulose Nanofibers as Water-Dispersible Surface-Enhanced Raman Scattering Substrates. ACS Appl Nano Mater 2020;3:6584-97. [DOI: 10.1021/acsanm.0c01045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Purwidyantri A, Karina M, Hsu C, Srikandace Y, Prabowo BA, Lai C. Facile Bacterial Cellulose Nanofibrillation for the Development of a Plasmonic Paper Sensor. ACS Biomater Sci Eng 2020;6:3122-31. [DOI: 10.1021/acsbiomaterials.9b01890] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Teixeira CA, Poppi RJ. Paper-based SERS substrate and one-class classifier to monitor thiabendazole residual levels in extracts of mango peels. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;229:117913. [DOI: 10.1016/j.saa.2019.117913] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
48 Gurian E, Giraudi P, Rosso N, Tiribelli C, Bonazza D, Zanconati F, Giuricin M, Palmisano S, de Manzini N, Sergo V, Bonifacio A. Differentiation between stages of non-alcoholic fatty liver diseases using surface-enhanced Raman spectroscopy. Anal Chim Acta 2020;1110:190-8. [PMID: 32278395 DOI: 10.1016/j.aca.2020.02.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. Small 2020;16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Cited by in Crossref: 52] [Cited by in F6Publishing: 68] [Article Influence: 26.0] [Reference Citation Analysis]
50 Xian L, You R, Lu D, Wu C, Feng S, Lu Y. Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances. Cellulose 2020;27:1483-95. [DOI: 10.1007/s10570-019-02855-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
51 Kim D, Ko Y, Kwon G, Kim U, Lee JH, You J. 2,2,6,6-Tetramethylpiperidine-1-oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. ACS Sustainable Chem Eng 2019;7:15640-7. [DOI: 10.1021/acssuschemeng.9b03680] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]