BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cardin GB, Mantha M, Jumarie C. Resistance to cadmium as a function of Caco-2 cell differentiation: role of reactive oxygen species in cadmium- but not zinc-induced adaptation mechanisms. Biometals 2009;22:753-69. [DOI: 10.1007/s10534-009-9223-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
Number Citing Articles
1 Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022;23:9442. [PMID: 36012706 DOI: 10.3390/ijms23169442] [Reference Citation Analysis]
2 Mireault M, Xiao Y, Barbeau B, Jumarie C. Cadmium affects autophagy in the human intestinal cells Caco-2 through ROS-mediated ERK activation. Cell Biol Toxicol 2021. [PMID: 34580807 DOI: 10.1007/s10565-021-09655-4] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2020;34. [DOI: 10.1002/jbt.22437] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Xue Y, Huang F, Tang R, Fan Q, Zhang B, Xu Z, Sun X, Ruan Z. Chlorogenic acid attenuates cadmium-induced intestinal injury in Sprague–Dawley rats. Food and Chemical Toxicology 2019;133:110751. [DOI: 10.1016/j.fct.2019.110751] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
5 Togno-peirce C, Limón-morales O, Montes-lópez S, Rojas-castañeda J, Márquez-aguiluz D, Bonilla-jaime H, Arteaga-silva M. Pleiotropic Effects of Cadmium Toxicity on the Neuroendocrine-Immune Network. NIB 2018;7:115-27. [DOI: 10.3233/nib-180138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
6 Gerasimenko TN, Senyavina NV, Anisimov NU, Tonevitskaya SA. A Model of Cadmium Uptake and Transport in Caco-2 Cells. Bull Exp Biol Med 2016;161:187-92. [PMID: 27259497 DOI: 10.1007/s10517-016-3373-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
7 Zhang H, Wang X, Wang M, Li L, Chang CH, Ji Z, Xia T, Nel AE. Mammalian Cells Exhibit a Range of Sensitivities to Silver Nanoparticles that are Partially Explicable by Variations in Antioxidant Defense and Metallothionein Expression. Small 2015;11:3797-805. [PMID: 25930061 DOI: 10.1002/smll.201500251] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 4.6] [Reference Citation Analysis]
8 Gebraël C, Jumarie C. Cadmium interference with ERK1/2 and AhR signaling without evidence for cross-talk. Toxicol Res 2015;4:1488-97. [DOI: 10.1039/c5tx00284b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
9 Sauvageau J, Jumarie C. Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441. Cell Biol Toxicol 2013;29:159-73. [DOI: 10.1007/s10565-013-9243-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
10 Breton J, Le Clère K, Daniel C, Sauty M, Nakab L, Chassat T, Dewulf J, Penet S, Carnoy C, Thomas P, Pot B, Nesslany F, Foligné B. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch Toxicol 2013;87:1787-95. [PMID: 23503628 DOI: 10.1007/s00204-013-1032-6] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 6.2] [Reference Citation Analysis]
11 Ohrvik H, Tydén E, Artursson P, Oskarsson A, Tallkvist J. Cadmium Transport in a Model of Neonatal Intestinal Cells Correlates to MRP1 and Not DMT1 or FPN1. ISRN Toxicol 2013;2013:892364. [PMID: 23724302 DOI: 10.1155/2013/892364] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
12 Lodemann U, Einspanier R, Scharfen F, Martens H, Bondzio A. Effects of zinc on epithelial barrier properties and viability in a human and a porcine intestinal cell culture model. Toxicol In Vitro. 2013;27:834-843. [PMID: 23274768 DOI: 10.1016/j.tiv.2012.12.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.7] [Reference Citation Analysis]
13 Aquilino C, Gonzalez Rubio ML, Seco EM, Escudero L, Corvo L, Soto M, Fresno M, Malpartida F, Bonay P. Differential trypanocidal activity of novel macrolide antibiotics; correlation to genetic lineage. PLoS One 2012;7:e40901. [PMID: 22859958 DOI: 10.1371/journal.pone.0040901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
14 Carrière P, Mantha M, Champagne-Paradis S, Jumarie C. Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 2011;24:857-74. [PMID: 21424617 DOI: 10.1007/s10534-011-9440-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
15 Zemann N, Zemann A, Klein P, Elmadfa I, Huettinger M. Differentiation- and polarization-dependent zinc tolerance in Caco-2 cells. Eur J Nutr 2011;50:379-86. [PMID: 21103883 DOI: 10.1007/s00394-010-0146-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
16 Mantha M, Jumarie C. Cadmium-induced hormetic effect in differentiated Caco-2 cells: ERK and p38 activation without cell proliferation stimulation. J Cell Physiol 2010;224:250-61. [PMID: 20232314 DOI: 10.1002/jcp.22128] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 0.5] [Reference Citation Analysis]