BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma T, Ma H, Ruan K, Shi X, Qiu H, Gao S, Gu J. Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2673-9] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 62.0] [Reference Citation Analysis]
Number Citing Articles
1 Li Z, Feng D, Li B, Xie D, Mei Y. FDM printed MXene/MnFe2O4/MWCNTs reinforced TPU composites with 3D Voronoi structure for sensor and electromagnetic shielding applications. Composites Science and Technology 2023;231:109803. [DOI: 10.1016/j.compscitech.2022.109803] [Reference Citation Analysis]
2 Tian K, Hu D, Wei Q, Fu Q, Deng H. Recent progress on multifunctional electromagnetic interference shielding polymer composites. Journal of Materials Science & Technology 2023;134:106-131. [DOI: 10.1016/j.jmst.2022.06.031] [Reference Citation Analysis]
3 Sun M, Wang D, Xiong Z, Zhang Z, Qin L, Chen C, Wu F, Liu P. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. Journal of Materials Science & Technology 2022;130:176-83. [DOI: 10.1016/j.jmst.2022.05.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Shen R, Weng M, Zhang L, Huang J, Sheng X. Biomass-based carbon aerogel/Fe3O4@PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage. Composites Part A: Applied Science and Manufacturing 2022;163:107248. [DOI: 10.1016/j.compositesa.2022.107248] [Reference Citation Analysis]
5 Liu H, Wang Z, Yang Y, Wu S, Wang C, You C, Tian N. Thermally conductive MWCNTs/Fe3O4/Ti3C2T MXene multi-layer films for broadband electromagnetic interference shielding. Journal of Materials Science & Technology 2022;130:75-85. [DOI: 10.1016/j.jmst.2022.05.009] [Reference Citation Analysis]
6 Wang X, Smith P, Qiang Z, Guan Q, You Z, Ye C, Zhu M. Fire-retardant, self-extinguishing multiblock poly(esterimide)s/graphene composites with segregated structure for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing 2022;163:107262. [DOI: 10.1016/j.compositesa.2022.107262] [Reference Citation Analysis]
7 Luo S, Xiang T, Dong J, Su F, Ji Y, Liu C, Feng Y. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science & Technology 2022;129:127-34. [DOI: 10.1016/j.jmst.2022.04.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
8 Ma X, Duan Y, Huang L, Ma B, Lei H. Multicomponent induced localized coupling in Penrose tiling for electromagnetic wave absorption and multiband compatibility. Journal of Materials Science & Technology 2022;130:86-92. [DOI: 10.1016/j.jmst.2022.04.049] [Reference Citation Analysis]
9 Luo Y, Xie Y, Geng W, Chu J, Wu H, Xie D, Sheng X, Mei Y. Boosting fire safety and mechanical performance of thermoplastic polyurethane by the face-to-face two-dimensional phosphorene/MXene architecture. Journal of Materials Science & Technology 2022;129:27-39. [DOI: 10.1016/j.jmst.2022.05.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 20.0] [Reference Citation Analysis]
10 Cheng R, Wang Y, Di X, Lu Z, Wang P, Wu X. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions. Journal of Materials Science & Technology 2022;129:15-26. [DOI: 10.1016/j.jmst.2022.04.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
11 Zhao J, Wang C, Wang C, Zhang K, Cong B, Yang L, Zhao X, Chen C. Synergistic effects of boron nitride sheets and reduced graphene oxide on reinforcing the thermal conduction, SERS performance and thermal property of polyimide composite films. J of Applied Polymer Sci 2022. [DOI: 10.1002/app.53401] [Reference Citation Analysis]
12 Jalali A, Zhang R, Rahmati R, Nofar M, Sain M, Park CB. Recent progress and perspective in additive manufacturing of EMI shielding functional polymer nanocomposites. Nano Res 2022. [DOI: 10.1007/s12274-022-5053-4] [Reference Citation Analysis]
13 Zhang Y, Li Y, Wei M, Yang D, Zhang Q, Zhang B. Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties. Journal of Materials Science & Technology 2022;128:148-59. [DOI: 10.1016/j.jmst.2022.04.026] [Reference Citation Analysis]
14 Qian K, Li S, Fang J, Yang Y, Cao S, Miao M, Feng X. C60 intercalating Ti3C2T MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. Journal of Materials Science & Technology 2022;127:71-7. [DOI: 10.1016/j.jmst.2022.03.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
15 Jia Z, Kong M, Yu B, Ma Y, Pan J, Wu G. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. Journal of Materials Science & Technology 2022;127:153-63. [DOI: 10.1016/j.jmst.2022.04.005] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 61.0] [Reference Citation Analysis]
16 Wang X, Zhang H, Li L. Structural design of poly(vinyl alcohol)/carbon fiber composite film used for antistatic packaging via asynchronous biaxial stretching. J of Applied Polymer Sci. [DOI: 10.1002/app.53160] [Reference Citation Analysis]
17 Zhao H, Huang Y, Wang X, Han Y, Du Z, Zheng Y, Chen L, Jin L. Lightweight and mechanically robust carbon aerogel/SnO2 nanorods composites with heterogeneous structure for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing 2022;161:107077. [DOI: 10.1016/j.compositesa.2022.107077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Xu M, Luo X, Zhang H, Zhang Y, Li L, Zhou X, Yu Z. Multifunctional Waterborne Polyurethane Nanocomposite Films with Remarkable Electromagnetic Interference Shielding, Electrothermal and Solarthermal Performances. Chin J Polym Sci 2022. [DOI: 10.1007/s10118-022-2813-2] [Reference Citation Analysis]
19 Zhao W, Yu W, Jiang Y, Yu Z, Wang G, Liu X. Patterning of thermosetting resins via laser engraving towards efficient thermal management. Nano Energy 2022;100:107477. [DOI: 10.1016/j.nanoen.2022.107477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Yang Y, Han M, Liu W, Wu N, Liu J. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res . [DOI: 10.1007/s12274-022-4817-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Xu H, Zhang G, Wang Y, Wang Y, Wang H, Huang Y, Liu P. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res . [DOI: 10.1007/s12274-022-4820-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
22 Peng T, Wang S, Xu Z, Tang T, Zhao Y. Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS Omega. [DOI: 10.1021/acsomega.2c03219] [Reference Citation Analysis]
23 Zhou B, Song J, Wang B, Feng Y, Liu C, Shen C. Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res . [DOI: 10.1007/s12274-022-4756-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Yue C, Zhao L, Guan L, Zhang X, Qu C, Wang D, Weng L. Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials. Journal of Colloid and Interface Science 2022;620:273-83. [DOI: 10.1016/j.jcis.2022.04.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 He X, Zhang K, Wang H, Zhang Y, Xiao G, Niu H, Yao Y. Tailored carbon-based aramid nanofiber nanocomposites with highly anisotropic thermal conductivity and superior mechanical properties for thermal management. Carbon 2022. [DOI: 10.1016/j.carbon.2022.07.078] [Reference Citation Analysis]
26 Hu J, Liang C, Li J, Lin C, Liang Y, Dong D. Ultrastrong and Hydrophobic Sandwich-Structured MXene-Based Composite Films for High-Efficiency Electromagnetic Interference Shielding. ACS Appl Mater Interfaces 2022. [PMID: 35850587 DOI: 10.1021/acsami.2c07741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Liu B, Cao M, Zhang Y, Wang Y, Zhao H. Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res . [DOI: 10.1007/s12274-022-4699-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
28 Qiu Y, Yang H, Hu F, Lin Y. Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Res . [DOI: 10.1007/s12274-022-4617-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Xia Y, Gao W, Gao C. A Review on Graphene‐Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Adv Funct Materials. [DOI: 10.1002/adfm.202204591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cheng Z, Chang G, Xue B, Xie L, Zheng Q. Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding. Journal of Materials Science & Technology 2022. [DOI: 10.1016/j.jmst.2022.05.049] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Wang X, Gu W, Lu H. A new thermal conductivity relational expression for polymer composites with constructal design fillers. International Communications in Heat and Mass Transfer 2022;136:106198. [DOI: 10.1016/j.icheatmasstransfer.2022.106198] [Reference Citation Analysis]
32 Zhou J, Thaiboonrod S, Fang J, Cao S, Miao M, Feng X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res . [DOI: 10.1007/s12274-022-4628-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
33 Xiong C, Wang T, Zhang Y, Zhu M, Ni Y. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res . [DOI: 10.1007/s12274-022-4512-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
34 Liu H, Wang Z, Wang J, Yang Y, Wu S, You C, Tian N, Li Y. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale 2022. [PMID: 35726826 DOI: 10.1039/d2nr02224a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhang S, Cheng B, Jia Z, Zhao Z, Jin X, Zhao Z, Wu G. The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00514-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
36 Wang W, Liu Y, Ye L, Coates P, Caton-Rose F, Zhao X. Biocompatibility improvement and controlled in vitro degradation of poly (lactic acid)-b-poly(lactide-co-caprolactone) by formation of highly oriented structure for orthopedic application. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35674722 DOI: 10.1002/jbm.b.35106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Yu S, Huang M, Hao R, He S, Liu H, Liu W, Zhu C. Recent advances in thermally conductive polymer composites. High Performance Polymers. [DOI: 10.1177/09540083221106058] [Reference Citation Analysis]
38 Wang S, Feng D, Guan H, Guo Y, Liu X, Yan C, Zhang L, Gu J. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like hetero-structured fillers. Composites Part A: Applied Science and Manufacturing 2022;157:106911. [DOI: 10.1016/j.compositesa.2022.106911] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
39 Li Y, Zhang D, Zhou B, He C, Wang B, Feng Y, Liu C. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Composites Part A: Applied Science and Manufacturing 2022;157:106945. [DOI: 10.1016/j.compositesa.2022.106945] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
40 Ruan K, Gu J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules. [DOI: 10.1021/acs.macromol.2c00491] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
41 Gao Y, Wu S, Li C, Xiao Y, Liu J, Zhang B. Homogeneous reinforcement as a strategy for the efficient preparation of high-strength, insulating and high heat-resistant PBO composite paper. J Mater Sci. [DOI: 10.1007/s10853-022-07176-x] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
42 Chen Q, Fan B, Zhang Q, Wang S, Cui W, Jia Y, Xu S, Zhao B, Zhang R. Design of 3D lightweight Ti3C2T MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceramics International 2022;48:14578-86. [DOI: 10.1016/j.ceramint.2022.01.351] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
43 Sun M, Zhang L, Li C. Modified cellulose nanocrystals based on SI‐ATRP for enhancing interfacial compatibility and mechanical performance of biodegradable PLA / PBAT blend. Polymer Composites. [DOI: 10.1002/pc.26653] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Hu D, Liu H, Yang M, Guo Y, Ma W. Construction of boron nitride nanosheets-based nanohybrids by electrostatic self-assembly for highly thermally conductive composites. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00463-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Ma Z, Zhang Z, Zhao F, Wang Y. A multifunctional coating for cotton fabrics integrating superior performance of flame-retardant and self-cleaning. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00464-9] [Reference Citation Analysis]
46 Xu Q, Xu W, Yang Y, Yin X, Zhou C, Han J, Li X, Shang Y, Zhang H. Enhanced interlayer strength in 3D printed poly (ether ether ketone) parts. Additive Manufacturing 2022;55:102852. [DOI: 10.1016/j.addma.2022.102852] [Reference Citation Analysis]
47 Zhang Y, Gu J. A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites. Nanomicro Lett 2022;14:89. [PMID: 35362900 DOI: 10.1007/s40820-022-00843-3] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 45.0] [Reference Citation Analysis]
48 Liang C, He J, Zhang Y, Zhang W, Liu C, Ma X, Liu Y, Gu J. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Composites Science and Technology 2022. [DOI: 10.1016/j.compscitech.2022.109445] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
49 Wang J, Ma X, Zhou J, Du F, Teng C. Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS Nano 2022. [PMID: 35333052 DOI: 10.1021/acsnano.2c01323] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
50 Chen C, Zhao X, Ye L. Low Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Polyoxymethylene/Carbon Nanotube Nanocomposites with Conductive Segregated Networks. Ind Eng Chem Res 2022;61:3962-72. [DOI: 10.1021/acs.iecr.1c05013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Chen Q, Zhang K, Huang L, Li Y, Yuan Y. Reduced Graphene Oxide/MXene Composite Foam with Multilayer Structure for Electromagnetic Interference Shielding and Heat Insulation Applications. Adv Eng Mater. [DOI: 10.1002/adem.202200098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Lv H, Yang Z, Pan H, Wu R. Electromagnetic absorption materials: current progress and new frontiers. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.100946] [Cited by in Crossref: 37] [Cited by in F6Publishing: 46] [Article Influence: 37.0] [Reference Citation Analysis]
53 Luo F, He Y, Cui W, Guo Y, Jin Y, Li H, Huang B, Qian Q. Shape-Stabilized Phase Change Materials with Superior Thermal Conductivity for Thermal Energy Harvesting. ACS Appl Polym Mater 2022;4:2160-8. [DOI: 10.1021/acsapm.2c00105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wang Y, Zhang Y, Zhang Z, Li T, Jiang J, Zhang X, Liu T, Qiao J, Huang J, Dong W. Pistachio-Inspired Bulk Graphene Oxide-Based Materials with Shapeability and Recyclability. ACS Nano 2022;16:3394-403. [PMID: 35129948 DOI: 10.1021/acsnano.2c00281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Han Y, Ruan K, Gu J. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res . [DOI: 10.1007/s12274-022-4159-z] [Cited by in Crossref: 121] [Cited by in F6Publishing: 96] [Article Influence: 121.0] [Reference Citation Analysis]
56 Song P, Ma Z, Qiu H, Ru Y, Gu J. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures. Nanomicro Lett 2022;14:51. [PMID: 35084576 DOI: 10.1007/s40820-022-00798-5] [Cited by in Crossref: 81] [Cited by in F6Publishing: 91] [Article Influence: 81.0] [Reference Citation Analysis]
57 Raju P, Rani GN, Kumar SU, Joseph A, Raju KCJ. Ultrasonically induced in situ polymerization of PANI-SWCNT nanocomposites for electromagnetic shielding applications. J Mater Sci: Mater Electron 2022;33:5138-48. [DOI: 10.1007/s10854-022-07702-2] [Reference Citation Analysis]
58 Cao X, Jia Z, Hu D, Wu G. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-021-00415-w] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 31.0] [Reference Citation Analysis]
59 Li Y, Qian Y, Jiang Q, Haruna AY, Luo Y, Yang J. Thermally conductive polymer-based composites: fundamentals, progress and flame retardancy/anti-electromagnetic interference design. J Mater Chem C. [DOI: 10.1039/d2tc03306b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Wang Y, Jiang B, Sun T, Wang S, Jin Y. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion. J Mater Chem C. [DOI: 10.1039/d2tc00571a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]