BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Verma P, Mathur AK, Srivastava A, Mathur A. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 2012;249:255-68. [PMID: 21630129 DOI: 10.1007/s00709-011-0291-4] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Gani U, Vishwakarma RA, Misra P. Membrane transporters: the key drivers of transport of secondary metabolites in plants. Plant Cell Rep 2021;40:1-18. [DOI: 10.1007/s00299-020-02599-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
2 Sun J, Peebles CAM. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 2016;253:1255-64. [DOI: 10.1007/s00709-015-0881-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
3 Pollier J, Vanden Bossche R, Rischer H, Goossens A. Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus. Plant Physiology and Biochemistry 2014;83:20-5. [DOI: 10.1016/j.plaphy.2014.07.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
4 Larsen B, Fuller VL, Pollier J, Van Moerkercke A, Schweizer F, Payne R, Colinas M, O'Connor SE, Goossens A, Halkier BA. Identification of Iridoid Glucoside Transporters in Catharanthus roseus. Plant Cell Physiol 2017;58:1507-18. [PMID: 28922750 DOI: 10.1093/pcp/pcx097] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
5 Burse A, Boland W. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application? Z Naturforsch C J Biosci 2017;72:417-27. [PMID: 28593879 DOI: 10.1515/znc-2017-0015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
6 Chaudhary S, Pandey R, Sharma V, Tripathi BN, Kumar S. Detection and Mapping of QTLs Affecting Contents of Pharmaceutical Alkaloids in Leaf and Root of Catharanthus roseus. Agric Res 2013;2:9-23. [DOI: 10.1007/s40003-013-0050-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
7 Zhong Z, Liu S, Han S, Li Y, Tao M, Liu A, He Q, Chen S, Dufresne C, Zhu W, Tian J. Integrative omic analysis reveals the improvement of alkaloid accumulation by ultraviolet-B radiation and its upstream regulation in Catharanthus roseus. Industrial Crops and Products 2021;166:113448. [DOI: 10.1016/j.indcrop.2021.113448] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
8 Liang C, Chen C, Zhou P, Xu L, Zhu J, Liang J, Zi J, Yu R. Effect of Aspergillus flavus Fungal Elicitor on the Production of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells. Molecules 2018;23:E3276. [PMID: 30544939 DOI: 10.3390/molecules23123276] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
9 Heinig U, Gutensohn M, Dudareva N, Aharoni A. The challenges of cellular compartmentalization in plant metabolic engineering. Curr Opin Biotechnol 2013;24:239-46. [PMID: 23246154 DOI: 10.1016/j.copbio.2012.11.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 44] [Article Influence: 5.7] [Reference Citation Analysis]
10 Fukuyama T, Ohashi-kaneko K, Watanabe H. Estimation of Optimal Red Light Intensity for Production of the Pharmaceutical Drug Components, Vindoline and Catharanthine, Contained in <i>Catharanthus roseus</i> (L.) G. Don. ecb 2015;53:217-20. [DOI: 10.2525/ecb.53.217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
11 Almagro L, Gutierrez J, Pedreño MA, Sottomayor M. Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tiss Organ Cult 2014;119:543-51. [DOI: 10.1007/s11240-014-0554-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
12 Chen Q, Lu X, Guo X, Guo Q, Li D. Metabolomics Characterization of Two Apocynaceae Plants, Catharanthus roseus and Vinca minor, Using GC-MS and LC-MS Methods in Combination. Molecules 2017;22:E997. [PMID: 28629120 DOI: 10.3390/molecules22060997] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
13 Pant B. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants. Adv Exp Med Biol 2014;808:25-39. [PMID: 24595608 DOI: 10.1007/978-81-322-1774-9_3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
14 Verma P, Mathur AK, Masood N, Luqman S, Shanker K. Tryptophan over-producing cell suspensions of Catharanthus roseus (L) G. Don and their up-scaling in stirred tank bioreactor: detection of a phenolic compound with antioxidant potential. Protoplasma 2013;250:371-80. [PMID: 22678752 DOI: 10.1007/s00709-012-0423-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
15 Verma P, Khan SA, Mathur AK, Shanker K, Kalra A. Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tiss Organ Cult 2014;118:257-68. [DOI: 10.1007/s11240-014-0478-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
16 Liu J, Cai J, Wang R, Yang S. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions. Int J Mol Sci 2016;18:E53. [PMID: 28036025 DOI: 10.3390/ijms18010053] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
17 Tonk D, Mujib A, Maqsood M, Ali M, Zafar N. Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell Tiss Organ Cult 2016;126:291-303. [DOI: 10.1007/s11240-016-0998-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]
18 Johnson AR, Moghe GD, Frank MH. Growing a glue factory: Open questions in laticifer development. Curr Opin Plant Biol 2021;64:102096. [PMID: 34461600 DOI: 10.1016/j.pbi.2021.102096] [Reference Citation Analysis]
19 Sharma V, Chaudhary S, Srivastava S, Pandey R, Kumar S. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J Genet 2012;91:49-69. [DOI: 10.1007/s12041-012-0150-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Yu B, Liu Y, Pan Y, Liu J, Wang H, Tang Z. Light enhanced the biosynthesis of terpenoid indole alkaloids to meet the opening of cotyledons in process of photomorphogenesis of Catharanthus roseus. Plant Growth Regul 2018;84:617-26. [DOI: 10.1007/s10725-017-0366-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
21 Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta 2013;1829:1236-47. [PMID: 24113224 DOI: 10.1016/j.bbagrm.2013.09.006] [Cited by in Crossref: 145] [Cited by in F6Publishing: 99] [Article Influence: 16.1] [Reference Citation Analysis]
22 Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 2016;15:221-50. [DOI: 10.1007/s11101-015-9406-4] [Cited by in Crossref: 81] [Cited by in F6Publishing: 34] [Article Influence: 11.6] [Reference Citation Analysis]
23 Yamamoto K, Takahashi K, Mizuno H, Anegawa A, Ishizaki K, Fukaki H, Ohnishi M, Yamazaki M, Masujima T, Mimura T. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proc Natl Acad Sci U S A 2016;113:3891-6. [PMID: 27001858 DOI: 10.1073/pnas.1521959113] [Cited by in Crossref: 56] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
24 Verma P, Khan SA, Mathur AK, Srivastava A, Shanker K. Tryptophan metabolism and evaluation of morphological, biochemical and molecular variations in a field grown plant population derived via direct adventitious shoot bud regeneration from pre-plasmolysed leaves of Catharanthus roseus. Plant Cell Tiss Organ Cult 2015;123:357-75. [DOI: 10.1007/s11240-015-0841-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
25 Yamamoto K, Takahashi K, Caputi L, Mizuno H, Rodriguez‐lopez CE, Iwasaki T, Ishizaki K, Fukaki H, Ohnishi M, Yamazaki M, Masujima T, O'connor SE, Mimura T. The complexity of intercellular localisation of alkaloids revealed by single‐cell metabolomics. New Phytol 2019;224:848-59. [DOI: 10.1111/nph.16138] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 7.7] [Reference Citation Analysis]
26 Verma P, Khan SA, Parasharami V, Mathur AK. ZCTs knockdown using antisense LNA GapmeR in specialized photomixotrophic cell suspensions of Catharanthus roseus: Rerouting the flux towards mono and dimeric indole alkaloids. Physiol Mol Biol Plants 2021;27:1437-53. [PMID: 34366588 DOI: 10.1007/s12298-021-01017-y] [Reference Citation Analysis]
27 Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P. Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 2013;35:867-80. [DOI: 10.1007/s11738-012-1130-8] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
28 Verma P, Singh N, Khan SA, Mathur AK, Sharma A, Jamal F. TIAs pathway genes and associated miRNA identification in Vinca minor: supporting aspidosperma and eburnamine alkaloids linkage via transcriptomic analysis. Physiol Mol Biol Plants 2020;26:1695-711. [PMID: 32801497 DOI: 10.1007/s12298-020-00842-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. New Phytol 2016;211:771-89. [PMID: 27112429 DOI: 10.1111/nph.13981] [Cited by in Crossref: 155] [Cited by in F6Publishing: 129] [Article Influence: 25.8] [Reference Citation Analysis]
30 Van Moerkercke A, Fabris M, Pollier J, Baart GJ, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol 2013;54:673-85. [PMID: 23493402 DOI: 10.1093/pcp/pct039] [Cited by in Crossref: 85] [Cited by in F6Publishing: 69] [Article Influence: 9.4] [Reference Citation Analysis]
31 Dong T, Song S, Wang Y, Yang R, Chen P, Su J, Ding X, Liu Y, Duan H. Effects of 5-azaC on Iridoid Glycoside Accumulation and DNA Methylation in Rehmannia glutinosa. Front Plant Sci 2022;13:913717. [DOI: 10.3389/fpls.2022.913717] [Reference Citation Analysis]
32 Arafa AS, Ragab AE, Ibrahim AS, Abdel-Mageed WS, Nasr ME. Cloning and Overexpression of Strictosidine β-D-Glucosidase Gene Short Sequence from Catharanthus roseus in Escherichia coli. Adv Pharm Bull 2019;9:655-61. [PMID: 31857971 DOI: 10.15171/apb.2019.076] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Verma P, Mathur AK, Shanker K. Increased availability of tryptophan in 5-methyltryptophan-tolerant shoots of Catharanthus roseus and their postharvest in vivo elicitation induces enhanced vindoline production. Appl Biochem Biotechnol 2012;168:568-79. [PMID: 22798187 DOI: 10.1007/s12010-012-9797-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
34 Verma P, Sharma A, Khan SA, Mathur AK, Shanker K. Morphogenetic and chemical stability of long-term maintained Agrobacterium -mediated transgenic Catharanthus roseus plants. Natural Product Research 2014;29:315-20. [DOI: 10.1080/14786419.2014.940348] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
35 Höfer R, Dong L, André F, Ginglinger J, Lugan R, Gavira C, Grec S, Lang G, Memelink J, Van Der Krol S, Bouwmeester H, Werck-reichhart D. Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metabolic Engineering 2013;20:221-32. [DOI: 10.1016/j.ymben.2013.08.001] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 6.2] [Reference Citation Analysis]
36 Nick P. Life versus 'biomass'-why application needs cell biology. Protoplasma 2016;253:1175-6. [PMID: 27586792 DOI: 10.1007/s00709-016-1014-7] [Reference Citation Analysis]
37 Ababaf M, Omidi H, Bakhshandeh A. Changes in antioxidant enzymes activities and alkaloid amount of Catharanthus roseus in response to plant growth regulators under drought condition. Industrial Crops and Products 2021;167:113505. [DOI: 10.1016/j.indcrop.2021.113505] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
38 Verma P, Khan SA, Masood N, Manika N, Sharma A, Verma N, Luqman S, Mathur AK. Differential rubisco content and photosynthetic efficiency of rol gene integrated Vinca minor transgenic plant: Correlating factors associated with morpho-anatomical changes, gene expression and alkaloid productivity. J Plant Physiol 2017;219:12-21. [PMID: 28957691 DOI: 10.1016/j.jplph.2017.09.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
39 Sharma A, Verma N, Verma P, Verma RK, Mathur A, Mathur AK. Optimization of a Bacopa monnieri-based genetic transformation model for testing the expression efficiency of pathway gene constructs of medicinal crops. In Vitro Cell Dev Biol -Plant 2017;53:22-32. [DOI: 10.1007/s11627-017-9804-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
40 Shitan N, Yazaki K. Dynamism of vacuoles toward survival strategy in plants. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020;1862:183127. [DOI: 10.1016/j.bbamem.2019.183127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
41 Prasad A, Mathur A, Kalra A, Gupta MM, Lal RK, Mathur AK. Fungal elicitor-mediated enhancement in growth and asiaticoside content of Centella asiatica L. shoot cultures. Plant Growth Regul 2013;69:265-73. [DOI: 10.1007/s10725-012-9769-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
42 Nick P. Space matters. Protoplasma 2012;249:221-2. [PMID: 22358173 DOI: 10.1007/s00709-012-0389-3] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
43 Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. The seco-iridoid pathway from Catharanthus roseus. Nat Commun 2014;5:3606. [PMID: 24710322 DOI: 10.1038/ncomms4606] [Cited by in Crossref: 213] [Cited by in F6Publishing: 196] [Article Influence: 26.6] [Reference Citation Analysis]
44 Yuan L, Grotewold E. Metabolic engineering to enhance the value of plants as green factories. Metab Eng 2015;27:83-91. [PMID: 25461830 DOI: 10.1016/j.ymben.2014.11.005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 32] [Article Influence: 6.1] [Reference Citation Analysis]
45 Kulkarni RN, Baskaran K, Jhang T. Breeding medicinal plant, periwinkle [ Catharanthus roseus (L) G. Don]: a review. Plant Genet Resour 2016;14:283-302. [DOI: 10.1017/s1479262116000150] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
46 Vishwakarma K, Mishra M, Patil G, Mulkey S, Ramawat N, Pratap Singh V, Deshmukh R, Kumar Tripathi D, Nguyen HT, Sharma S. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Critical Reviews in Biotechnology 2019;39:861-83. [DOI: 10.1080/07388551.2019.1616669] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
47 Shitan N. Secondary metabolites in plants: transport and self-tolerance mechanisms. Bioscience, Biotechnology, and Biochemistry 2016;80:1283-93. [DOI: 10.1080/09168451.2016.1151344] [Cited by in Crossref: 80] [Cited by in F6Publishing: 63] [Article Influence: 13.3] [Reference Citation Analysis]
48 Sharma A, Mathur AK, Ganpathy J, Joshi B, Patel P. Effect of abiotic elicitation and pathway precursors feeding over terpenoid indole alkaloids production in multiple shoot and callus cultures of Catharanthus roseus. Biologia 2019;74:543-53. [DOI: 10.2478/s11756-019-00202-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
49 De Luca V, Salim V, Thamm A, Masada SA, Yu F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 2014;19:35-42. [PMID: 24709280 DOI: 10.1016/j.pbi.2014.03.006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 59] [Article Influence: 9.1] [Reference Citation Analysis]
50 Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future. Science 2016;353:1232-6. [PMID: 27634523 DOI: 10.1126/science.aad2062] [Cited by in Crossref: 96] [Cited by in F6Publishing: 75] [Article Influence: 19.2] [Reference Citation Analysis]
51 Verma P, Mathur AK, Khan SA, Verma N, Sharma A. Transgenic studies for modulating terpenoid indole alkaloids pathway in Catharanthus roseus: present status and future options. Phytochem Rev 2017;16:19-54. [DOI: 10.1007/s11101-015-9447-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
52 Cao N, Wang CH. Strictosidine synthase, an indispensable enzyme involved in the biosynthesis of terpenoid indole and β-carboline alkaloids. Chin J Nat Med 2021;19:591-607. [PMID: 34419259 DOI: 10.1016/S1875-5364(21)60059-6] [Reference Citation Analysis]
53 Sharma A, Verma P, Mathur A, Mathur AK. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 2018;255:425-35. [DOI: 10.1007/s00709-017-1151-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
54 Panda S, Kazachkova Y, Aharoni A. Catch-22 in Specialized Metabolism: Balancing Defense and Growth. J Exp Bot 2021:erab348. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Sharma A, Verma P, Mathur A, Mathur AK. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma 2018;255:1281-94. [PMID: 29508069 DOI: 10.1007/s00709-018-1233-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]