BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol 2017;162:2539-51. [PMID: 28547385 DOI: 10.1007/s00705-017-3417-y] [Cited by in Crossref: 126] [Cited by in F6Publishing: 101] [Article Influence: 25.2] [Reference Citation Analysis]
Number Citing Articles
1 Solnier J, Fladerer JP. Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochem Rev 2020;:1-23. [PMID: 32982616 DOI: 10.1007/s11101-020-09720-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
2 Tatar G, Salmanli M, Dogru Y, Tuzuner T. Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies. J Biomol Struct Dyn 2021;:1-10. [PMID: 33749547 DOI: 10.1080/07391102.2021.1900919] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Zhang G, Zhang C, Sun J, Xiong Y, Wang L, Chen D. Phytochemical Regulation of RNA in Treating Inflammatory Bowel Disease and Colon Cancer: Inspirations from Cell and Animal Studies. J Pharmacol Exp Ther 2021;376:464-72. [PMID: 33397676 DOI: 10.1124/jpet.120.000354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. Futur J Pharm Sci 2021;7:120. [PMID: 34150912 DOI: 10.1186/s43094-021-00269-5] [Reference Citation Analysis]
5 Batool F, Mughal EU, Zia K, Sadiq A, Naeem N, Javid A, Ul-Haq Z, Saeed M. Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease. J Biomol Struct Dyn 2020;:1-12. [PMID: 33251983 DOI: 10.1080/07391102.2020.1850359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
6 Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int J Mol Sci 2021;22:11069. [PMID: 34681727 DOI: 10.3390/ijms222011069] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020;12:E2534. [PMID: 32825564 DOI: 10.3390/nu12092534] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
8 Dev S, Kaur I. Bioactive molecules from eucalyptus essential oil as potential inhibitors of COVID 19 corona virus infection by molecular docking studies. Kragujevac J Science 2020. [DOI: 10.5937/kgjsci2042029d] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Amparo TR, Seibert JB, Almeida TC, Costa FSF, Silveira BM, da Silva GN, Dos Santos ODH, de Souza GHB. In silico approach of secondary metabolites from Brazilian herbal medicines to search for potential drugs against SARS-CoV-2. Phytother Res 2021;35:4297-308. [PMID: 33797123 DOI: 10.1002/ptr.7097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Jo S, Kim S, Shin DH, Kim MS. Inhibition of African swine fever virus protease by myricetin and myricitrin. J Enzyme Inhib Med Chem 2020;35:1045-9. [PMID: 32299265 DOI: 10.1080/14756366.2020.1754813] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Alrasheid AA, Babiker MY, Awad TA. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol 2021;9:10. [PMID: 33432283 DOI: 10.1007/s40203-020-00073-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
12 Pitsillou E, Liang J, Karagiannis C, Ververis K, Darmawan KK, Ng K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput Biol Chem 2020;89:107408. [PMID: 33137690 DOI: 10.1016/j.compbiolchem.2020.107408] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
13 Sharma V, Sehrawat N, Sharma A, Yadav M, Verma P, Sharma AK. Multifaceted antiviral therapeutic potential of dietary flavonoids: Emerging trends and future perspectives. Biotechnol Appl Biochem 2021. [PMID: 34586691 DOI: 10.1002/bab.2265] [Reference Citation Analysis]
14 Šudomová M, Berchová-bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan STS. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022;14:592. [DOI: 10.3390/v14030592] [Reference Citation Analysis]
15 Norahmad NA, Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, Sastu UR, Muhammad A, Ho TCD, Jusoh B, Zolkifli NA, Thayan R, Mat Ripen A, Zainol M, Syed Mohamed AF. Effect of freeze-dried Carica papaya leaf juice on inflammatory cytokines production during dengue virus infection in AG129 mice. BMC Complement Altern Med 2019;19:44. [PMID: 30744623 DOI: 10.1186/s12906-019-2438-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
16 Storz MA. Lifestyle Adjustments in Long-COVID Management: Potential Benefits of Plant-Based Diets. Curr Nutr Rep 2021. [PMID: 34506003 DOI: 10.1007/s13668-021-00369-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sun X, Peng Y, Zhao J, Xie Z, Lei X, Tang G. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors. Bioorg Chem 2021;112:104891. [PMID: 33940446 DOI: 10.1016/j.bioorg.2021.104891] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Pastor N, Collado MC, Manzoni P. Phytonutrient and Nutraceutical Action against COVID-19: Current Review of Characteristics and Benefits. Nutrients 2021;13:464. [PMID: 33573173 DOI: 10.3390/nu13020464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Luna L, Simirgiotis MJ, Lima B, Bórquez J, Feresin GE, Tapia A. UHPLC-MS Metabolome Fingerprinting: The Isolation of Main Compounds and Antioxidant Activity of the Andean Species Tetraglochin ameghinoi (Speg.) Speg. Molecules 2018;23:E793. [PMID: 29596368 DOI: 10.3390/molecules23040793] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
20 Singh D, Khan MA, Siddique HR. Apigenin, A Plant Flavone Playing Noble Roles in Cancer Prevention Via Modulation of Key Cell Signaling Networks. PRA 2020;14:298-311. [DOI: 10.2174/1574892814666191026095728] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Ding C, Shen H, Tian Z, Kang M, Ma J, He Q, Wang J, Zhang Y, Deng Y, Wang D. Protective effect of hawthorn vitexin on the ethanol-injured DNA of BRL-3A hepatocytes. Medicine (Baltimore) 2021;100:e28228. [PMID: 34918685 DOI: 10.1097/MD.0000000000028228] [Reference Citation Analysis]
22 Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA. Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules 2020;25:E3980. [PMID: 32882868 DOI: 10.3390/molecules25173980] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
23 Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019;26:47. [PMID: 31215493 DOI: 10.1186/s12929-019-0540-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
24 Wang Y, Wang X, Xiong Y, Kaushik AC, Muhammad J, Khan A, Dai H, Wei DQ. New strategy for identifying potential natural HIV-1 non-nucleoside reverse transcriptase inhibitors against drug-resistance: an in silico study. J Biomol Struct Dyn 2020;38:3327-41. [PMID: 31422767 DOI: 10.1080/07391102.2019.1656673] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
25 Bhowmik D, Nandi R, Prakash A, Kumar D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon 2021;7:e06515. [PMID: 33748510 DOI: 10.1016/j.heliyon.2021.e06515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
26 Jain AS, Sushma P, Dharmashekar C, Beelagi MS, Prasad SK, Shivamallu C, Prasad A, Syed A, Marraiki N, Prasad KS. In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J Biol Sci 2021;28:1040-51. [PMID: 33424398 DOI: 10.1016/j.sjbs.2020.11.049] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
27 Kreiser T, Zaguri D, Sachdeva S, Zamostiano R, Mograbi J, Segal D, Bacharach E, Gazit E. Inhibition of Respiratory RNA Viruses by a Composition of Ionophoric Polyphenols with Metal Ions. Pharmaceuticals 2022;15:377. [DOI: 10.3390/ph15030377] [Reference Citation Analysis]
28 Vincent S, Arokiyaraj S, Saravanan M, Dhanraj M. Molecular Docking Studies on the Anti-viral Effects of Compounds From Kabasura Kudineer on SARS-CoV-2 3CLpro. Front Mol Biosci 2020;7:613401. [PMID: 33425994 DOI: 10.3389/fmolb.2020.613401] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
29 Cardoso Reis AC, Valente GM, Silva BDM, de Brito Magalhães CL, Kohlhoff M, Brandão GC. Anti-arboviral activity and chemical characterization of hispidulin and ethanolic extracts from Millingtonia hortensis L.f. and Oroxylum indicum (L.) Kurz (Bignoniaceae). Natural Product Research. [DOI: 10.1080/14786419.2022.2065485] [Reference Citation Analysis]
30 Romeo I, Mesiti F, Lupia A, Alcaro S. Current Updates on Naturally Occurring Compounds Recognizing SARS-CoV-2 Druggable Targets. Molecules 2021;26:632. [PMID: 33530467 DOI: 10.3390/molecules26030632] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
31 Nie Y, Tao X, Zhang H, Chai Y, Yuan R. Self-Assembly of Gold Nanoclusters into a Metal–Organic Framework with Efficient Electrochemiluminescence and Their Application for Sensitive Detection of Rutin. Anal Chem 2021;93:3445-51. [DOI: 10.1021/acs.analchem.0c04682] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Tian M, Huang Y, Wang X, Cao M, Zhao Z, Chen T, Yuan C, Wang N, Zhang B, Li C, Zhou X. Vaccaria segetalis: A Review of Ethnomedicinal, Phytochemical, Pharmacological, and Toxicological Findings. Front Chem 2021;9:666280. [PMID: 33996757 DOI: 10.3389/fchem.2021.666280] [Reference Citation Analysis]
33 Karthika C, Swathy Krishna R, Rahman MH, Akter R, Kaushik D. COVID-19, the firestone in 21st century: a review on coronavirus disease and its clinical perspectives. Environ Sci Pollut Res Int 2021. [PMID: 34599450 DOI: 10.1007/s11356-021-16654-9] [Reference Citation Analysis]
34 Gour A, Manhas D, Bag S, Gorain B, Nandi U. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother Res 2021;35:4258-83. [PMID: 33786876 DOI: 10.1002/ptr.7092] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021;14:381. [PMID: 33921724 DOI: 10.3390/ph14040381] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Montone CM, Aita SE, Arnoldi A, Capriotti AL, Cavaliere C, Cerrato A, Lammi C, Piovesana S, Ranaldi G, Laganà A. Characterization of the Trans-Epithelial Transport of Green Tea (C. sinensis) Catechin Extracts with In Vitro Inhibitory Effect against the SARS-CoV-2 Papain-like Protease Activity. Molecules 2021;26:6744. [PMID: 34771162 DOI: 10.3390/molecules26216744] [Reference Citation Analysis]
37 Sudeep HV, Gouthamchandra K, Shyamprasad K. Molecular docking analysis of Withaferin A from Withania somnifera with the Glucose regulated protein 78 (GRP78) receptor and the SARS-CoV-2 main protease. Bioinformation 2020;16:411-7. [PMID: 32831523 DOI: 10.6026/97320630016411] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
38 Abate M, Pagano C, Masullo M, Citro M, Pisanti S, Piacente S, Bifulco M. Mangostanin, a Xanthone Derived from Garcinia mangostana Fruit, Exerts Protective and Reparative Effects on Oxidative Damage in Human Keratinocytes. Pharmaceuticals 2022;15:84. [DOI: 10.3390/ph15010084] [Reference Citation Analysis]
39 Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicology Reports 2022. [DOI: 10.1016/j.toxrep.2022.03.011] [Reference Citation Analysis]
40 Lin HY, Zeng YT, Lin CJ, Harroun SG, Anand A, Chang L, Wu CJ, Lin HJ, Huang CC. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. J Colloid Interface Sci 2022;622:481-93. [PMID: 35525149 DOI: 10.1016/j.jcis.2022.04.124] [Reference Citation Analysis]
41 Khalil A, Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat Prod Bioprospect 2020;10:411-29. [PMID: 33057955 DOI: 10.1007/s13659-020-00271-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
42 Rudrapal M, Issahaku AR, Agoni C, Bendale AR, Nagar A, Soliman MES, Lokwani D. In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2. J Biomol Struct Dyn 2021;:1-17. [PMID: 34182889 DOI: 10.1080/07391102.2021.1944909] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Jeon S, Han J, Kim CW, Kim JG, Moon JH, Kim S. Identification of a candidate gene responsible for the G locus determining chartreuse bulb color in onion (Allium cepa L.) using bulked segregant RNA-Seq. Theor Appl Genet 2022. [PMID: 35034161 DOI: 10.1007/s00122-021-04016-5] [Reference Citation Analysis]
44 Wang F, Chen L, Chen S, Chen H, Liu Y. Microbial biotransformation of Pericarpium Citri Reticulatae (PCR) by Aspergillus niger and effects on antioxidant activity. Food Sci Nutr 2021;9:855-65. [PMID: 33598169 DOI: 10.1002/fsn3.2049] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Shah MA, Rasul A, Yousaf R, Haris M, Faheem HI, Hamid A, Khan H, Khan AH, Aschnar M, Batiha GE. Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. Phytother Res 2021. [PMID: 34396612 DOI: 10.1002/ptr.7228] [Reference Citation Analysis]
46 Istifli ES, Netz PA, Sihoglu Tepe A, Husunet MT, Sarikurkcu C, Tepe B. In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. J Biomol Struct Dyn 2020;:1-15. [PMID: 33111622 DOI: 10.1080/07391102.2020.1840444] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Gomaa AA, Mohamed HS, Abd-Ellatief RB, Gomaa MA. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 2021;29:1033-48. [PMID: 34224069 DOI: 10.1007/s10787-021-00841-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Dumić J, Cvetko A, Abramović I, Šupraha Goreta S, Perović A, Njire Bratičević M, Kifer D, Sinčić N, Gornik O, Žarak M. Changes in Specific Biomarkers Indicate Cardiac Adaptive and Anti-inflammatory Response of Repeated Recreational SCUBA Diving. Front Cardiovasc Med 2022;9:855682. [DOI: 10.3389/fcvm.2022.855682] [Reference Citation Analysis]
49 Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan STS, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J 2021;:1-23. [PMID: 34367380 DOI: 10.1007/s13167-021-00249-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Salles TS, Meneses MDF, Caldas LA, Sá-Guimarães TE, de Oliveira DM, Ventura JA, Azevedo RC, Kuster RM, Soares MR, Ferreira DF. Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus. Parasit Vectors 2021;14:443. [PMID: 34479605 DOI: 10.1186/s13071-021-04955-4] [Reference Citation Analysis]
51 Krzyżek P, Paluch E, Gościniak G. Synergistic Therapies as a Promising Option for the Treatment of Antibiotic-Resistant Helicobacter pylori. Antibiotics (Basel) 2020;9:E658. [PMID: 33007899 DOI: 10.3390/antibiotics9100658] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
52 Yin Q, Wang L, Yu H, Chen D, Zhu W, Sun C. Pharmacological Effects of Polyphenol Phytochemicals on the JAK-STAT Signaling Pathway. Front Pharmacol 2021;12:716672. [PMID: 34539403 DOI: 10.3389/fphar.2021.716672] [Reference Citation Analysis]
53 Wang B, Lv D, Huang P, Yan F, Liu C, Liu H. Optimization, evaluation and identification of flavonoids in Cirsium setosum (Willd.) MB by using response surface methodology. Food Measure 2019;13:1175-84. [DOI: 10.1007/s11694-019-00033-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
54 Godinho PIC, Soengas RG, Silva VLM. Therapeutic Potential of Glycosyl Flavonoids as Anti-Coronaviral Agents. Pharmaceuticals (Basel) 2021;14:546. [PMID: 34200456 DOI: 10.3390/ph14060546] [Reference Citation Analysis]
55 Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021;104:107851. [PMID: 33556646 DOI: 10.1016/j.jmgm.2021.107851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021;26:5377. [PMID: 34500810 DOI: 10.3390/molecules26175377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, Khalifa SAM, Alhumaydhi FA, Alrumaihi F, Abidi SH, Allemailem KS, Efferth T, Soliman ME, Paré PW, El-Seedi HR, Hegazy MF. Blue Biotechnology: Computational Screening of Sarcophyton Cembranoid Diterpenes for SARS-CoV-2 Main Protease Inhibition. Mar Drugs 2021;19:391. [PMID: 34356816 DOI: 10.3390/md19070391] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Monteiro M, Lavrador AS, Santos R, Rangel F, Iglesias P, Tárraga M, Couto A, Serra CR, Tafalla C, Da Costa E, Domingues MR, Oliva-Teles A, Carvalho AP, Enes P, Díaz-Rosales P. Evaluation of the Potential of Marine Algae Extracts as a Source of Functional Ingredients Using Zebrafish as Animal Model for Aquaculture. Mar Biotechnol (NY) 2021. [PMID: 34189658 DOI: 10.1007/s10126-021-10044-5] [Reference Citation Analysis]
59 Ji N, Pan S, Shao C, Chen Y, Zhang Z, Wang R, Qiu Y, Jin M, Kong D. Spinacetin Suppresses the Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mouse Model. Front Pharmacol 2018;9:824. [PMID: 30104977 DOI: 10.3389/fphar.2018.00824] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
60 da Silva TF, Ferraz AC, Almeida LT, Caetano CCDS, Camini FC, Lima RLS, Andrade ACDSP, de Oliveira DB, Rocha KLS, Silva BDM, de Magalhães JC, Magalhães CLDB. Antiviral effect of silymarin against Zika virus in vitro. Acta Tropica 2020;211:105613. [DOI: 10.1016/j.actatropica.2020.105613] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Patil R, Chikhale R, Khanal P, Gurav N, Ayyanar M, Sinha S, Prasad S, Dey YN, Wanjari M, Gurav SS. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Inform Med Unlocked 2021;22:100504. [PMID: 33363251 DOI: 10.1016/j.imu.2020.100504] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
62 Seliger JM, Misuri L, Maser E, Hintzpeter J. The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J Enzyme Inhib Med Chem 2018;33:607-14. [PMID: 29532688 DOI: 10.1080/14756366.2018.1437728] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
63 Antonio ADS, Wiedemann LSM, Veiga-junior VF. Natural products' role against COVID-19. RSC Adv 2020;10:23379-93. [DOI: 10.1039/d0ra03774e] [Cited by in Crossref: 61] [Article Influence: 30.5] [Reference Citation Analysis]
64 Allam AE, Assaf HK, Hassan HA, Shimizu K, Elshaier YAMM. An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of COVID-19. RSC Adv 2020;10:29983-98. [DOI: 10.1039/d0ra05265e] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
65 Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2022;95. [DOI: 10.1111/sji.13106] [Reference Citation Analysis]
66 Chidambaram SK, Ali D, Alarifi S, Radhakrishnan S, Akbar I. In silico molecular docking: Evaluation of coumarin based derivatives against SARS-CoV-2. J Infect Public Health 2020;13:1671-7. [PMID: 33008777 DOI: 10.1016/j.jiph.2020.09.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
67 Debnath S, Kanakaraju M, Islam M, Yeeravalli R, Sen D, Das A. In silico design, synthesis and activity of potential drug-like chrysin scaffold-derived selective EGFR inhibitors as anticancer agents. Comput Biol Chem 2019;83:107156. [PMID: 31710991 DOI: 10.1016/j.compbiolchem.2019.107156] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
68 Medina Cano CI, Martínez Bustamante E, López Orozco CA. Phenological scale for the mortiño or agraz (Vaccinium meridionale Swartz) in the high Colombian Andean area. Rev Fac Nac Agron Medellín 2019;72:8897-908. [DOI: 10.15446/rfnam.v72n3.74460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
69 Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020;9:E659. [PMID: 32722164 DOI: 10.3390/antiox9080659] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
70 Kumar A, Singh AK, Tripathi G. Phytochemicals as Potential Curative Agents against Viral Infection: A Review. COC 2020;24:2356-66. [DOI: 10.2174/1385272824999200910093524] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021;891:173759. [PMID: 33249077 DOI: 10.1016/j.ejphar.2020.173759] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
72 Liu Y, Song X, Li C, Hu H, Li W, Wang L, Hu J, Liao C, Liang H, He Z, Ye L. Chrysin Ameliorates Influenza Virus Infection in the Upper Airways by Repressing Virus-Induced Cell Cycle Arrest and Mitochondria-Dependent Apoptosis. Front Immunol 2022;13:872958. [DOI: 10.3389/fimmu.2022.872958] [Reference Citation Analysis]
73 Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021;22:11306. [PMID: 34768736 DOI: 10.3390/ijms222111306] [Reference Citation Analysis]
74 Shawan MMAK, Halder SK, Hasan MA. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bull Natl Res Cent 2021;45:27. [PMID: 33495684 DOI: 10.1186/s42269-020-00479-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
75 Chidambaram S, El-Sheikh MA, Alfarhan AH, Radhakrishnan S, Akbar I. Synthesis of novel coumarin analogues: Investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies. Saudi J Biol Sci 2021;28:1100-8. [PMID: 33199969 DOI: 10.1016/j.sjbs.2020.11.038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
76 Hiremath S, Kumar HDV, Nandan M, Mantesh M, Shankarappa KS, Venkataravanappa V, Basha CRJ, Reddy CNL. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech 2021;11:44. [PMID: 33457171 DOI: 10.1007/s13205-020-02578-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
77 Gogoi N, Chowdhury P, Goswami AK, Das A, Chetia D, Gogoi B. Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease. Mol Divers 2021;25:1745-59. [PMID: 33236176 DOI: 10.1007/s11030-020-10150-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Panda K, Alagarasu K, Patil P, Agrawal M, More A, Kumar NV, Mainkar PS, Parashar D, Cherian S. In Vitro Antiviral Activity of α-Mangostin against Dengue Virus Serotype-2 (DENV-2). Molecules 2021;26:3016. [PMID: 34069351 DOI: 10.3390/molecules26103016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Gobeil A, Maherani B, Lacroix M. Norovirus elimination on the surface of fresh foods. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2020.1848784] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Ashraf J, Mughal EU, Alsantali RI, Obaid RJ, Sadiq A, Naeem N, Ali A, Massadaq A, Javed Q, Javid A, Sumrra SH, Zafar MN, Ahmed SA. Structure-based designing and synthesis of 2-phenylchromone derivatives as potent tyrosinase inhibitors: In vitro and in silico studies. Bioorganic & Medicinal Chemistry 2021;35:116057. [DOI: 10.1016/j.bmc.2021.116057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Jamiu AT, Pohl CH, Bello S, Adedoja T, Sabiu S. A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. All Life 2021;14:1100-28. [DOI: 10.1080/26895293.2021.2013327] [Reference Citation Analysis]
82 Yuan H, Liu L, Zhou J, Zhang T, Daily JW, Park S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J Med Food 2022;25:355-66. [PMID: 35438554 DOI: 10.1089/jmf.2021.K.0144] [Reference Citation Analysis]
83 Othman SI, Nayel MA, Alwaele MA, Al Fassam H, Abu-Taweel GM, Altoom NG, Almalki AM, Allam AA, Alturki AM, El-Shabasy RM. Immunology and controlling of coronaviruses; the current enemy for humanity: A review. Int J Biol Macromol 2021:S0141-8130(21)02381-3. [PMID: 34732305 DOI: 10.1016/j.ijbiomac.2021.10.216] [Reference Citation Analysis]
84 Fanunza E, Iampietro M, Distinto S, Corona A, Quartu M, Maccioni E, Horvat B, Tramontano E. Quercetin Blocks Ebola Virus Infection by Counteracting the VP24 Interferon-Inhibitory Function. Antimicrob Agents Chemother 2020;64:e00530-20. [PMID: 32366711 DOI: 10.1128/AAC.00530-20] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
85 Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical assisted electrospray/spinning to produce PVP+quercetin microparticles and microfibers. Journal of the Taiwan Institute of Chemical Engineers 2020;117:278-86. [DOI: 10.1016/j.jtice.2020.12.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
86 Denel-bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). European Journal of Medicinal Chemistry 2022;231:114136. [DOI: 10.1016/j.ejmech.2022.114136] [Reference Citation Analysis]
87 Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020;78:ftaa046. [PMID: 32860686 DOI: 10.1093/femspd/ftaa046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020;35:145-51. [PMID: 31724441 DOI: 10.1080/14756366.2019.1690480] [Cited by in Crossref: 235] [Cited by in F6Publishing: 211] [Article Influence: 117.5] [Reference Citation Analysis]
89 Sharma A, Gupta S, Chauhan S, Nair A, Sharma P. ASTILBIN: A PROMISING UNEXPLORED COMPOUND WITH MULTIDIMENSIONAL MEDICINAL AND HEALTH BENEFITS. Pharmacol Res 2020;158:104894. [PMID: 32407960 DOI: 10.1016/j.phrs.2020.104894] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
90 Choudhry N, Zhao X, Xu D, Zanin M, Chen W, Yang Z, Chen J. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Med Chem 2020;63:13205-27. [PMID: 32845145 DOI: 10.1021/acs.jmedchem.0c00626] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
91 Bhati S, Kaushik V, Singh J. Rational design of flavonoid based potential inhibitors targeting SARS-CoV 3CL protease for the treatment of COVID-19. J Mol Struct 2021;1237:130380. [PMID: 33840835 DOI: 10.1016/j.molstruc.2021.130380] [Reference Citation Analysis]
92 Agrawal PK, Agrawal C, Blunden G. Rutin: A Potential Antiviral for Repurposing as a SARS-CoV-2 Main Protease (M pro ) Inhibitor. Natural Product Communications 2021;16:1934578X2199172. [DOI: 10.1177/1934578x21991723] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
93 Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. Materials (Basel) 2021;14:2096. [PMID: 33919199 DOI: 10.3390/ma14092096] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 da Silva Maia-Neto L, Amaral A, Ferreira de Lucena LR, de Souza Leão Pereira Magnata S, Borges da Silva E, Netto AM, Morais de Oliveira AF, Antônia de Souza I. Gamma irradiation for enhancing active chemical compounds in leaf extracts of Libidibia ferrea (Leguminosae). Appl Radiat Isot 2020;166:109306. [PMID: 33080554 DOI: 10.1016/j.apradiso.2020.109306] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Ibrahim MAA, Abdelrahman AHM, Jaragh-alhadad LA, Atia MAM, Alzahrani OR, Ahmed MN, Moustafa MS, Soliman MES, Shawky AM, Paré PW, Hegazy MF, Sidhom PA. Exploring Toxins for Hunting SARS-CoV-2 Main Protease Inhibitors: Molecular Docking, Molecular Dynamics, Pharmacokinetic Properties, and Reactome Study. Pharmaceuticals 2022;15:153. [DOI: 10.3390/ph15020153] [Reference Citation Analysis]
96 Shah S, Chaple D, Arora S, Yende S, Moharir K, Lohiya G. Exploring the active constituents of Oroxylum indicum in intervention of novel coronavirus (COVID-19) based on molecular docking method. Netw Model Anal Health Inform Bioinform 2021;10:8. [PMID: 33585155 DOI: 10.1007/s13721-020-00279-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
97 Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn 2020;:1-11. [PMID: 32698689 DOI: 10.1080/07391102.2020.1796811] [Cited by in Crossref: 27] [Cited by in F6Publishing: 51] [Article Influence: 13.5] [Reference Citation Analysis]
98 Ebrahimzadeh-Attari V, Panahi G, Hebert JR, Ostadrahimi A, Saghafi-Asl M, Lotfi-Yaghin N, Baradaran B. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect 2021;11:119-36. [PMID: 34195036 DOI: 10.34172/hpp.2021.17] [Reference Citation Analysis]
99 Agrawal PK, Agrawal C, Blunden G. Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations. Natural Product Communications 2020;15:1934578X2097629. [DOI: 10.1177/1934578x20976293] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
100 Tsai P, Hsieh C, Ting JU, Ciou Y, Lee C, Hsieh C, Lien T, Hsueh C, Chen B. Synergistic deciphering of bioenergy production and electron transport characteristics to screen traditional Chinese medicine (TCM) for COVID-19 drug development. Journal of the Taiwan Institute of Chemical Engineers 2022;135:104365. [DOI: 10.1016/j.jtice.2022.104365] [Reference Citation Analysis]
101 Khalid H, Khalid S, Sufyan M, Ashfaq UA. In-silico elucidation reveals potential phytochemicals against angiotensin-converting enzyme 2 (ACE-2) receptor to fight coronavirus disease 2019 (COVID-19). Z Naturforsch C J Biosci 2022. [PMID: 35470645 DOI: 10.1515/znc-2021-0325] [Reference Citation Analysis]
102 Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des 2019;94:2023-30. [PMID: 31436895 DOI: 10.1111/cbdd.13604] [Cited by in Crossref: 106] [Cited by in F6Publishing: 91] [Article Influence: 35.3] [Reference Citation Analysis]
103 Ngwa W, Kumar R, Thompson D, Lyerly W, Moore R, Reid TE, Lowe H, Toyang N. Potential of Flavonoid-Inspired Phytomedicines against COVID-19. Molecules 2020;25:E2707. [PMID: 32545268 DOI: 10.3390/molecules25112707] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 22.5] [Reference Citation Analysis]
104 Panikar S, Shoba G, Arun M, Sahayarayan JJ, Usha Raja Nanthini A, Chinnathambi A, Alharbi SA, Nasif O, Kim HJ. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health 2021;14:601-10. [PMID: 33848890 DOI: 10.1016/j.jiph.2020.12.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
105 Diarimalala RO, Hu M, Wei Y, Hu K. Recent advances of enterovirus 71 [Formula: see text] targeting Inhibitors. Virol J 2020;17:173. [PMID: 33176821 DOI: 10.1186/s12985-020-01430-x] [Reference Citation Analysis]
106 Shaji D, Yamamoto S, Saito R, Suzuki R, Nakamura S, Kurita N. Proposal of novel natural inhibitors of severe acute respiratory syndrome coronavirus 2 main protease: Molecular docking and ab initio fragment molecular orbital calculations. Biophys Chem 2021;275:106608. [PMID: 33962341 DOI: 10.1016/j.bpc.2021.106608] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
107 Jha RK, Khan RJ, Parthiban A, Singh E, Jain M, Amera GM, Singh RP, Ramachandran P, Ramachandran R, Sachithanandam V, Muthukumaran J, Singh AK. Identifying the natural compound Catechin from tropical mangrove plants as a potential lead candidate against 3CLpro from SARS-CoV-2: An integrated in silico approach. J Biomol Struct Dyn 2021;:1-20. [PMID: 34644249 DOI: 10.1080/07391102.2021.1988710] [Reference Citation Analysis]
108 Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sciences 2020;259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
109 Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R. Phytochemicals as Antiviral Agents: Recent Updates. In: Swamy MK, editor. Plant-derived Bioactives. Singapore: Springer; 2020. pp. 279-95. [DOI: 10.1007/978-981-15-1761-7_12] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 9.5] [Reference Citation Analysis]
110 Santana MS, Lopes R, Peron IH, Cruz CR, Gaspar AM, Costa PI. Natural Bioactive Compounds as Adjuvant Therapy for Hepatitis C Infection. CNF 2021;17:458-69. [DOI: 10.2174/1573401316999201009152726] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Istifli ES, Şihoğlu Tepe A, Netz PA, Sarikürkcü C, Kiliç İH, Tepe B. Determination of the interaction between the receptor binding domain of 2019-nCoV spike protein, TMPRSS2, cathepsin B and cathepsin L, and glycosidic and aglycon forms of some flavonols. Turk J Biol 2021;45:484-502. [PMID: 34803449 DOI: 10.3906/biy-2104-51] [Reference Citation Analysis]
112 C S, S DK, Ragunathan V, Tiwari P, A S, P BD. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 2020;:1-27. [PMID: 32897178 DOI: 10.1080/07391102.2020.1815584] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
113 Ibrahim MAA, Mohamed EAR, Abdelrahman AHM, Allemailem KS, Moustafa MF, Shawky AM, Mahzari A, Hakami AR, Abdeljawaad KAA, Atia MAM. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. J Mol Graph Model 2021;105:107904. [PMID: 33798836 DOI: 10.1016/j.jmgm.2021.107904] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
114 Ibrahim MAA, Abdelrahman AHM, Mohamed TA, Atia MAM, Al-Hammady MAM, Abdeljawaad KAA, Elkady EM, Moustafa MF, Alrumaihi F, Allemailem KS, El-Seedi HR, Paré PW, Efferth T, Hegazy MF. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors. Molecules 2021;26:2082. [PMID: 33916461 DOI: 10.3390/molecules26072082] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
115 Aryal S, Skinner T, Bridges B, Weber JT. The Pathology of Parkinson's Disease and Potential Benefit of Dietary Polyphenols. Molecules 2020;25:E4382. [PMID: 32987656 DOI: 10.3390/molecules25194382] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
116 Teles AM, Silva-Silva JV, Fernandes JMP, Abreu-Silva AL, Calabrese KDS, Mendes Filho NE, Mouchrek AN, Almeida-Souza F. GC-MS Characterization of Antibacterial, Antioxidant, and Antitrypanosomal Activity of Syzygium aromaticum Essential Oil and Eugenol. Evid Based Complement Alternat Med 2021;2021:6663255. [PMID: 33688364 DOI: 10.1155/2021/6663255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
117 Agrawal PK, Agrawal C, Blunden G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Natural Product Communications 2021;16:1934578X2110425. [DOI: 10.1177/1934578x211042540] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
118 Rakshit G, Dagur P, Satpathy S, Patra A, Jain A, Ghosh M. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19). J Biomol Struct Dyn 2021;:1-13. [PMID: 33682606 DOI: 10.1080/07391102.2021.1892529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
119 Arabyan E, Kotsynyan A, Hakobyan A, Zakaryan H. Antiviral agents against African swine fever virus. Virus Research 2019;270:197669. [DOI: 10.1016/j.virusres.2019.197669] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
120 Vignesh R, Velu V, Sureban SM. Could Nutraceutical Approaches Possibly Attenuate the Cytokine Storm in COVID-19 Patients? Front Cell Infect Microbiol 2021;11:667733. [PMID: 33968808 DOI: 10.3389/fcimb.2021.667733] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
121 Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021;12:596855. [PMID: 33981214 DOI: 10.3389/fphar.2021.596855] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
122 Chen M, He X, Sun H, Sun Y, Li L, Zhu J, Xia G, Guo X, Zang H. Phytochemical analysis, UPLC-ESI-Orbitrap-MS analysis, biological activity, and toxicity of extracts from Tripleurospermum limosum (Maxim.) Pobed. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.103797] [Reference Citation Analysis]
123 Attia GH, Moemen YS, Youns M, Ibrahim AM, Abdou R, El Raey MA. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf B Biointerfaces 2021;203:111724. [PMID: 33838582 DOI: 10.1016/j.colsurfb.2021.111724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
124 Wu J, Sun B, Hou L, Guan F, Wang L, Cheng P, Scobell S, Cheng YC, Lam W. Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China. Front Pharmacol 2020;11:615287. [PMID: 33716728 DOI: 10.3389/fphar.2020.615287] [Reference Citation Analysis]
125 Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021;188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Reference Citation Analysis]
126 Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 2021;39:3347-57. [PMID: 32362245 DOI: 10.1080/07391102.2020.1763201] [Cited by in Crossref: 107] [Cited by in F6Publishing: 112] [Article Influence: 53.5] [Reference Citation Analysis]
127 Semprini A, Singer J, Braithwaite I, Shortt N, Thayabaran D, McConnell M, Weatherall M, Beasley R. Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: a randomised controlled trial. BMJ Open 2019;9:e026201. [PMID: 31092654 DOI: 10.1136/bmjopen-2018-026201] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
128 Singh J, Malik D, Raina A. Computational investigation for identification of potential phytochemicals and antiviral drugs as potential inhibitors for RNA-dependent RNA polymerase of COVID-19. J Biomol Struct Dyn 2020;:1-16. [PMID: 33200678 DOI: 10.1080/07391102.2020.1847688] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
129 Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci Total Environ 2021;769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
130 Sahin E, Orhan C, Uckun FM, Sahin K. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients. Front Nutr. 2020;7:580504. [PMID: 33195370 DOI: 10.3389/fnut.2020.580504] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
131 Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Nat Prod Bioprospect 2020;10:271-83. [PMID: 32948973 DOI: 10.1007/s13659-020-00257-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
132 Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opinion on Therapeutic Targets 2020;24:745-57. [DOI: 10.1080/14728222.2020.1784141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
133 Shcherbakov KV, Panova MA, Burgart YV, Zarubaev VV, Gerasimova NA, Evstigneeva NP, Saloutin VI. The synthesis and biological evaluation of A- and B-ring fluorinated flavones and their key intermediates. Journal of Fluorine Chemistry 2021;249:109857. [DOI: 10.1016/j.jfluchem.2021.109857] [Reference Citation Analysis]
134 Salles TS, Meneses MDF, Yamamoto KA, Sá-Guimarães TE, Caldas LA, Silva JHS, da Silva Ferreira P, Amaral ACF, Ventura JA, Azevedo RC, Kuster RM, Soares MR, Ferreira DF. Chemical composition and anti-Mayaro virus activity of Schinus terebinthifolius fruits. Virusdisease 2021;32:526-34. [PMID: 34631977 DOI: 10.1007/s13337-021-00698-z] [Reference Citation Analysis]
135 Couttolenc A, Medina ME, Trigos Á, Espinoza C. Antioxidant capacity of fungi associated with corals and sponges of the reef system of Veracruz, Mexico. Electronic Journal of Biotechnology 2022;55:40-6. [DOI: 10.1016/j.ejbt.2021.11.002] [Reference Citation Analysis]
136 Xu P, Ganaie SS, Wang X, Wang Z, Kleiboeker S, Horton NC, Heier RF, Meyers MJ, Tavis JE, Qiu J. Endonuclease Activity Inhibition of the NS1 Protein of Parvovirus B19 as a Novel Target for Antiviral Drug Development. Antimicrob Agents Chemother 2019;63:e01879-18. [PMID: 30530599 DOI: 10.1128/AAC.01879-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
137 Chen H, Singh H, Bhardwaj N, Bhardwaj SK, Khatri M, Kim K, Peng W. An exploration on the toxicity mechanisms of phytotoxins and their potential utilities. Critical Reviews in Environmental Science and Technology 2022;52:395-435. [DOI: 10.1080/10643389.2020.1823172] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
138 Androutsopoulou C, Christopoulou SD, Hahalis P, Kotsalou C, Lamari FN, Vantarakis A. Evaluation of Essential Oils and Extracts of Rose Geranium and Rose Petals as Natural Preservatives in Terms of Toxicity, Antimicrobial, and Antiviral Activity. Pathogens 2021;10:494. [PMID: 33921899 DOI: 10.3390/pathogens10040494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
139 Theerawatanasirikul S, Thangthamniyom N, Kuo CJ, Semkum P, Phecharat N, Chankeeree P, Lekcharoensuk P. Natural Phytochemicals, Luteolin and Isoginkgetin, Inhibit 3C Protease and Infection of FMDV, In Silico and In Vitro. Viruses 2021;13:2118. [PMID: 34834926 DOI: 10.3390/v13112118] [Reference Citation Analysis]
140 Khalil H, Abd El Maksoud AI, Roshdey T, El‐masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol 2018;91:45-55. [DOI: 10.1002/jmv.25295] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
141 Kiani AK, Dhuli K, Anpilogov K, Bressan S, Dautaj A, Dundar M, Beccari T, Ergoren MC, Bertelli M. Natural compounds as inhibitors of SARS-CoV-2 endocytosis: A promising approach against COVID-19. Acta Biomed 2020;91:e2020008. [PMID: 33170174 DOI: 10.23750/abm.v91i13-S.10520] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
142 Maryam M, Te KK, Wong FC, Chai TT, Low GKK, Gan SC, Chee HY. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. Journal of Integrative Agriculture 2020;19:1085-96. [DOI: 10.1016/s2095-3119(19)62820-0] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
143 Rudrapal M, Gogoi N, Chetia D, Khan J, Banwas S, Alshehri B, Alaidarous MA, Laddha UD, Khairnar SJ, Walode SG. Repurposing of Phytomedicine-Derived Bioactive Compounds with Promising Anti-SARS-CoV-2 Potential: Molecular Docking, MD Simulation and Drug-Likeness/ ADMET Studies. Saudi J Biol Sci 2021. [PMID: 34924801 DOI: 10.1016/j.sjbs.2021.12.018] [Reference Citation Analysis]
144 Ferreira C, Viana SD, Reis F. Gut Microbiota Dysbiosis-Immune Hyperresponse-Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms. 2020;8. [PMID: 33019592 DOI: 10.3390/microorganisms8101514] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]