BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song X, Fu J, Wang J, Li C, Liu Z. Simultaneous voltammetric determination of acetaminophen and dopamine using a glassy carbon electrode modified with copper porphyrin-exfoliated graphene. Mikrochim Acta 2018;185:369. [PMID: 29987371 DOI: 10.1007/s00604-018-2891-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Gao X, Wei C, Li X, Chen Y. Preparation of iron porphyrin/calix[8]arene/graphene ternary composites based on molecular recognition function and their dopamine electrochemical sensing properties. Sci Sin -Chim 2022;52:1408-1416. [DOI: 10.1360/ssc-2022-0038] [Reference Citation Analysis]
2 Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. Chemosphere 2022;:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Ren S, Feng R, Cheng S, Huang L, Wang Q, Zheng Z. Construction of a sensitive electrochemical sensor based on hybrid 1 T/2H MoS2 nanoflowers anchoring on rGO nanosheets for the voltammetric determination of acetaminophen. Microchemical Journal 2022;175:107129. [DOI: 10.1016/j.microc.2021.107129] [Reference Citation Analysis]
4 Torrinha Á, Oliveira TM, Ribeiro FW, Morais S, Correia AN, de Lima-neto P. Advantages and limitations of functionalized graphene-based electrochemical sensors for environmental monitoring. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00009-0] [Reference Citation Analysis]
5 Feng Y, Li Y, Yu S, Yang Q, Tong Y, Ye BC. Electrochemical sensor based on N-doped carbon dots decorated with manganese oxide nanospheres for simultaneous detection of p-aminophenol and paracetamol. Analyst 2021;146:5135-42. [PMID: 34282821 DOI: 10.1039/d1an00966d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Chen S, Zhang M, Zhang H, Yan X, Xie J, Qi J, Sun X, Li J. Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. Environ Res 2021;201:111500. [PMID: 34147465 DOI: 10.1016/j.envres.2021.111500] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Magna G, Mandoj F, Stefanelli M, Pomarico G, Monti D, Di Natale C, Paolesse R, Nardis S. Recent Advances in Chemical Sensors Using Porphyrin-Carbon Nanostructure Hybrid Materials. Nanomaterials (Basel) 2021;11:997. [PMID: 33924607 DOI: 10.3390/nano11040997] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Chen Y, Zhu Y, Zhao Y, Wang J, Li M. Insight into CuX (CuO, Cu2O, and CuS) for enhanced performance of CuX/g-C3N4 nanocomposites-based acetaminophen electrochemical sensors. Microchemical Journal 2021;163:105884. [DOI: 10.1016/j.microc.2020.105884] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Tian Y, Zhao J, Han D, Zhao S, Zhang Y, Cui G. Study of a novel fabrication method of 3D Ag-based nanoporous structures for electrochemical detection. Journal of Electroanalytical Chemistry 2021;882:114990. [DOI: 10.1016/j.jelechem.2021.114990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Ören Varol T, Hakli O, Anik U. Graphene oxide–porphyrin composite nanostructure included electrochemical sensor for catechol detection. New J Chem 2021;45:1734-42. [DOI: 10.1039/d0nj05475e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
11 Kang K, Wang B, Ji X, Liu Y, Zhao W, Du Y, Guo Z, Ren J. Hemin-doped metal–organic frameworks based nanozyme electrochemical sensor with high stability and sensitivity for dopamine detection. RSC Adv 2021;11:2446-52. [DOI: 10.1039/d0ra08224d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Sadik Cogal, Aysegul Oksuz. Enhanced Electrocatalytic Activity of Thiophene-Substituted Asymmetric Porphyrin Film for Electrochemical Determination of Dopamine. Russ J Phys Chem 2020;94:2836-43. [DOI: 10.1134/s0036024420130087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Meenakshi S, Pandian K. Enhanced Electrochemical Sensing of Neurotransmitter in Serum and Injection Samples at Nickel (II) Hexacyanoferrate Deposited on Nanotubular Clay as Facile Electron Transfer Mediator. J Electrochem Soc 2020;167:147510. [DOI: 10.1149/1945-7111/abc5da] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Silva Araújo M, Barretto TR, Galvão JCR, Tarley CRT, Dall'antônia LH, Matos R, Medeiros RA. Visible Light Photoelectrochemical Sensor for Acetaminophen Determination using a Glassy Carbon Electrode Modified with BiVO 4 Nanoparticles. Electroanalysis 2021;33:663-71. [DOI: 10.1002/elan.202060031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Liu Y, He X, Ma P, Huang Y, Li X, Sun Y, Wang X, Song D. Fluorometric detection of dopamine based on 3-aminophenylboronic acid-functionalized AgInZnS QDs and cells imaging. Talanta 2020;217:121081. [PMID: 32498860 DOI: 10.1016/j.talanta.2020.121081] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
16 Song Y, Zhang Y, Li J, Tan C, Li Y. Preparation of poly ionic liquid-mesoporous carbon nanospheres and its application in simultaneous determination of hydroquinone and catechol, and detection of paracetamol. Journal of Electroanalytical Chemistry 2020;865:114157. [DOI: 10.1016/j.jelechem.2020.114157] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
17 Khairy M, Banks CE. A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-4118-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
18 Jin Y, Li X, Ge C, Ma J, Li Y, Zhao E, Yao S, Xu G, Li D. Carbon nanotube hollow polyhedrons derived from ZIF-8@ZIF-67 coupled to electro-deposited gold nanoparticles for voltammetric determination of acetaminophen. Microchim Acta 2020;187. [DOI: 10.1007/s00604-019-3814-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
19 Wang J, Zhang H, Zhao J, Zhang R, Zhao N, Ren H, Li Y. Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen- and sulfur- co-doped carbon dots. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3870-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
20 Liu X, Li W, Zeng T, Zhang S, Zhou B, Li M, Zhao P, Peng C. Sensitive Detection of Acetaminophen Based on N, P-Co-Doped Carbon Microspheres Modified Electrode. J Electrochem Soc 2019;166:B1491-6. [DOI: 10.1149/2.0381915jes] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
21 Mulyasuryani A, Tjahjanto R, Andawiyah R. Simultaneous Voltammetric Detection of Acetaminophen and Caffeine Base on Cassava Starch—Fe3O4 Nanoparticles Modified Glassy Carbon Electrode. Chemosensors 2019;7:49. [DOI: 10.3390/chemosensors7040049] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
22 de Moraes NC, da Silva ENT, Petroni JM, Ferreira VS, Lucca BG. Design of novel, simple, and inexpensive 3D printing-based miniaturized electrochemical platform containing embedded disposable detector for analytical applications. Electrophoresis 2020;41:278-86. [PMID: 31529502 DOI: 10.1002/elps.201900270] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
23 Younus AR, Iqbal J, Muhammad N, Rehman F, Tariq M, Niaz A, Badshah S, Saleh TA, Rahim A. Nonenzymatic amperometric dopamine sensor based on a carbon ceramic electrode of type SiO2/C modified with Co3O4 nanoparticles. Mikrochim Acta 2019;186:471. [PMID: 31240490 DOI: 10.1007/s00604-019-3605-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
24 Yue HY, Wu PF, Huang S, Wang ZZ, Gao X, Song SS, Wang WQ, Zhang HJ, Guo XR. Golf ball-like MoS2 nanosheet arrays anchored onto carbon nanofibers for electrochemical detection of dopamine. Mikrochim Acta 2019;186:378. [PMID: 31134402 DOI: 10.1007/s00604-019-3495-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
25 Song H, Zhao H, Zhang X, Xu Y, Cheng X, Gao S, Huo L. A hollow urchin-like α-MnO2 as an electrochemical sensor for hydrogen peroxide and dopamine with high selectivity and sensitivity. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3316-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
26 Pan Q, Xu Z, Deng S, Zhang F, Li H, Cheng Y, Wei L, Wang J, Zhou B. A mechanochemically synthesized porous organic polymer derived CQD/chitosan–graphene composite film electrode for electrochemiluminescence determination of dopamine. RSC Adv 2019;9:39332-7. [DOI: 10.1039/c9ra06912g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]