BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Huang B, Yu F, Yuan Q, Gu M, Ji J, Zhang Y, Li Y. 3D nitrogen-doped graphite foam@Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Microchim Acta 2018;185. [DOI: 10.1007/s00604-017-2631-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhao Y, Liang X, Chen D, Bian X, Liu W, Han L. Denatured proteins show new vitality: Green synthesis of germanium oxide hollow microspheres with versatile functions by denaturing proteins around bubbles. Aggregate. [DOI: 10.1002/agt2.204] [Reference Citation Analysis]
2 Zhang W, Ma J, Meng F, Jiang Y, Shen L, Sun T, Qin Y, Zhu N, Zhang M. Wearable biomolecule smart sensor based on Au@PB NPs with high electrochemical activity. Journal of Alloys and Compounds 2022;891:161983. [DOI: 10.1016/j.jallcom.2021.161983] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Hu Y, Zhu L, Mei X, Liu J, Yao Z, Li Y. Dual-Mode Sensing Platform for Electrochemiluminescence and Colorimetry Detection Based on a Closed Bipolar Electrode. Anal Chem 2021;93:12367-73. [PMID: 34469106 DOI: 10.1021/acs.analchem.1c02184] [Reference Citation Analysis]
4 Yan L, Miao K, Ma P, Ma X, Bi R, Chen F. A feasible electrochemical biosensor for determination of glucose based on Prussian blue - Enzyme aggregates cascade catalytic system. Bioelectrochemistry 2021;141:107838. [PMID: 34038858 DOI: 10.1016/j.bioelechem.2021.107838] [Reference Citation Analysis]
5 El-Said WA, Yoon J, Lee SN, Choi JW. Electrochemical Cell Chips Based on Functionalized Nanometals. Front Chem 2021;9:671922. [PMID: 34026732 DOI: 10.3389/fchem.2021.671922] [Reference Citation Analysis]
6 Dang Y, Guan X, Zhou Y, Hao C, Zhang Y, Chen S, Ma Y, Bai Y, Gong Y, Gao Y. Biocompatible PB/Ti3C2 hybrid nanocomposites for the non-enzymatic electrochemical detection of H2O2 released from living cells. Sensors and Actuators B: Chemical 2020;319:128259. [DOI: 10.1016/j.snb.2020.128259] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
7 Jeerapan I, Sonsa-ard T, Nacapricha D. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020;8:71. [DOI: 10.3390/chemosensors8030071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
8 Jerez-Masaquiza MD, Fernández L, González G, Montero-Jiménez M, Espinoza-Montero PJ. Electrochemical Sensor Based on Prussian Blue Electrochemically Deposited at ZrO2 Doped Carbon Nanotubes Glassy Carbon Modified Electrode. Nanomaterials (Basel) 2020;10:E1328. [PMID: 32646042 DOI: 10.3390/nano10071328] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Kholosi F, Afkhami A, Hashemi P, Madrakian T, Bagheri H. Bioelectrocatalysis and direct determination of H2O2 using the high-performance platform: chitosan nanofibers modified with SDS and hemoglobin. J IRAN CHEM SOC 2020;17:1401-9. [DOI: 10.1007/s13738-020-01865-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
10 Luo J, Li T, Yang M. Detection protein biomarker with gold nanoparticles functionalized hollow mesoporous Prussian blue nanoparticles as electrochemical probes. Chinese Chemical Letters 2020;31:202-4. [DOI: 10.1016/j.cclet.2019.05.051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
11 Liang W, Rong Y, Fan L, Zhang C, Dong W, Li J, Niu J, Yang C, Shuang S, Dong C, Wong W. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3861-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
12 Wang J, Zhang H, Zhao J, Zhang R, Zhao N, Ren H, Li Y. Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen- and sulfur- co-doped carbon dots. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3870-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
13 Annalakshmi M, Balasubramanian P, Chen SM, Chen TW. Enzyme-free electrocatalytic sensing of hydrogen peroxide using a glassy carbon electrode modified with cobalt nanoparticle-decorated tungsten carbide. Mikrochim Acta 2019;186:265. [PMID: 30929084 DOI: 10.1007/s00604-019-3377-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
14 Khan F, Akhtar N, Jalal N, Hussain I, Szmigielski R, Hayat MQ, Ahmad HB, El-Said WA, Yang M, Janjua HA. Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Mikrochim Acta 2019;186:127. [PMID: 30684013 DOI: 10.1007/s00604-019-3227-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
15 Wang D, Wang J, Zhang J, Li Y, Zhang Y, Li Y, Ye BC. Novel electrochemical sensing platform based on integration of molecularly imprinted polymer with Au@Ag hollow nanoshell for determination of resveratrol. Talanta 2019;196:479-85. [PMID: 30683394 DOI: 10.1016/j.talanta.2018.12.063] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
16 Tang J, Huang L, Cheng Y, Zhuang J, Li P, Tang D. Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction. Mikrochim Acta 2018;185:569. [PMID: 30506518 DOI: 10.1007/s00604-018-3089-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 Li Y, Xu W, Zhao X, Huang Y, Kang J, Qi Q, Zhong C. Electrochemical sensors based on molecularly imprinted polymers on Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive detection of trace ractopamine in water. Analyst 2018;143:5094-102. [PMID: 30209459 DOI: 10.1039/c8an00993g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
18 Li Z, Jiang Y, Wang Z, Wang W, Yuan Y, Wu X, Liu X, Li M, Dilpazir S, Zhang G, Wang D, Liu C, Jiang J. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. Mikrochim Acta 2018;185:501. [PMID: 30302565 DOI: 10.1007/s00604-018-3032-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Qin Z, Li Y, Gu N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Adv Healthc Mater 2018;7:e1800347. [PMID: 29974662 DOI: 10.1002/adhm.201800347] [Cited by in Crossref: 94] [Cited by in F6Publishing: 97] [Article Influence: 23.5] [Reference Citation Analysis]