BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Taleat Z, Khoshroo A, Mazloum-ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 2014;181:865-91. [DOI: 10.1007/s00604-014-1181-1] [Cited by in Crossref: 263] [Cited by in F6Publishing: 143] [Article Influence: 32.9] [Reference Citation Analysis]
Number Citing Articles
1 Sunyer A, González-navarro A, Serra-roig MP, Serrano N, Díaz-cruz MS, Díaz-cruz JM. First application of carbon-based screen-printed electrodes for the voltammetric determination of the organic UV filters oxybenzone and octocrylene. Talanta 2019;196:381-8. [DOI: 10.1016/j.talanta.2018.12.092] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
2 Regiart M, Pereira SV, Bertolino FA, Garcia CD, Raba J, Aranda PR. An electrochemical immunosensor for anti-T. cruzi IgM antibodies, a biomarker for congenital Chagas disease, using a screen-printed electrode modified with gold nanoparticles and functionalized with shed acute phase antigen. Microchim Acta 2016;183:1203-10. [DOI: 10.1007/s00604-016-1752-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Cankurtaran H, Berber Karadayi E, Sungur S. Conductive composites of serigraphic inks and their usage in heavy metal sensor and biosensor. Progress in Organic Coatings 2016;98:6-9. [DOI: 10.1016/j.porgcoat.2016.04.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Pani D, Achilli A, Bonfiglio A. Survey on Textile Electrode Technologies for Electrocardiographic (ECG) Monitoring, from Metal Wires to Polymers. Adv Mater Technol 2018;3:1800008. [DOI: 10.1002/admt.201800008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
5 Wen Y, Xu J. Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J Polym Sci Part A: Polym Chem 2017;55:1121-50. [DOI: 10.1002/pola.28482] [Cited by in Crossref: 137] [Cited by in F6Publishing: 52] [Article Influence: 27.4] [Reference Citation Analysis]
6 Chu Z, Peng J, Jin W. Advanced nanomaterial inks for screen-printed chemical sensors. Sensors and Actuators B: Chemical 2017;243:919-26. [DOI: 10.1016/j.snb.2016.12.022] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 12.4] [Reference Citation Analysis]
7 Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: The impact of nanotechnology. Biosensors and Bioelectronics 2017;87:373-87. [DOI: 10.1016/j.bios.2016.08.084] [Cited by in Crossref: 197] [Cited by in F6Publishing: 141] [Article Influence: 39.4] [Reference Citation Analysis]
8 Ganganboina AB, Doong R. Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion. Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-3063-4] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
9 Habekost A. University experiments on the absorption spectroelectrochemistry and the surface‐enhanced Raman effect of methylviogen on a gold electrode. Chemkon. [DOI: 10.1002/ckon.202200034] [Reference Citation Analysis]
10 Li B, Tan H, Jenkins D, Srinivasa Raghavan V, Rosa BG, Güder F, Pan G, Yeatman E, Sharp DJ. Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon 2020;168:144-62. [DOI: 10.1016/j.carbon.2020.06.048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Krampa FD, Aniweh Y, Kanyong P, Awandare GA. Graphene nanoplatelet-based sensor for the detection of dopamine and N-acetyl-p-aminophenol in urine. Arabian Journal of Chemistry 2020;13:3218-25. [DOI: 10.1016/j.arabjc.2018.10.006] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wei L, Liu L, Kang H, Liu S, Wang G, Hu X, Wang C. Development of a Disposable Label-Free Impedance Immunosensor for Direct and Sensitive Clenbuterol Determination in Pork. Food Anal Methods 2016;9:1781-8. [DOI: 10.1007/s12161-015-0361-x] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
13 Sarakhman O, Dubenska L, Švorc Ľ. First voltammetric behavior study of non-narcotic analgesic drug nefopam and its reliable determination on boron-doped diamond electrodes. Journal of Electroanalytical Chemistry 2020;858:113759. [DOI: 10.1016/j.jelechem.2019.113759] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
14 Kunpatee K, Kaewdorn K, Duangtong J, Chaiyo S, Chailapakul O, Kalcher K, Kerr M, Samphao A. A new disposable electrochemical sensor for the individual and simultaneous determination of carbamate pesticides using a nanocomposite modified screen-printed electrode. Microchemical Journal 2022;177:107318. [DOI: 10.1016/j.microc.2022.107318] [Reference Citation Analysis]
15 Ihalainen P, Määttänen A, Sandler N. Printing technologies for biomolecule and cell-based applications. International Journal of Pharmaceutics 2015;494:585-92. [DOI: 10.1016/j.ijpharm.2015.02.033] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
16 Rezaei B, Irannejad N. Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors. Elsevier; 2019. pp. 11-43. [DOI: 10.1016/b978-0-12-816491-4.00002-4] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 da Silva ETSG, Alves TMR, Kubota LT. Direct Toner Printing: A Versatile Technology for Easy Fabrication of Flexible Miniaturized Electrodes. Electroanalysis 2018;30:345-52. [DOI: 10.1002/elan.201700717] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
18 Ruan X, Wang Y, Kwon EY, Wang L, Cheng N, Niu X, Ding S, Van Wie BJ, Lin Y, Du D. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosens Bioelectron 2021;184:113238. [PMID: 33878594 DOI: 10.1016/j.bios.2021.113238] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
19 Vogiazi V, de la Cruz A, Mishra S, Shanov V, Heineman WR, Dionysiou DD. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. ACS Sens 2019;4:1151-73. [PMID: 31056912 DOI: 10.1021/acssensors.9b00376] [Cited by in Crossref: 66] [Cited by in F6Publishing: 48] [Article Influence: 22.0] [Reference Citation Analysis]
20 Ben Abdallah Z, Sghaier H, Gammoudi I, Moroté F, Cassagnère S, Romo L, Béven L, Grauby-heywang C, Cohen-bouhacina T. Design, Elaboration, and Characterization of an Immunosensor for the Detection of a Fungal Toxin in Foodstuff Analyses. Chemosensors 2022;10:137. [DOI: 10.3390/chemosensors10040137] [Reference Citation Analysis]
21 Lopes LC, Santos A, Bueno PR. An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. Sensors and Actuators Reports 2022. [DOI: 10.1016/j.snr.2022.100087] [Reference Citation Analysis]
22 Lai HC, Chin SF, Pang SC, Henry Sum MS, Perera D. Carbon Nanoparticles Based Electrochemical Biosensor Strip for Detection of Japanese Encephalitis Virus. Journal of Nanomaterials 2017;2017:1-7. [DOI: 10.1155/2017/3615707] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
23 Mazloum-ardakani M, Hosseinzadeh L, Heidari MM. Detection of the M268T Angiotensinogen A3B2 mutation gene based on screen-printed electrodes modified with a nanocomposite: application to human genomic samples. Microchim Acta 2016;183:219-27. [DOI: 10.1007/s00604-015-1616-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
24 Xu M, Wang R, Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 2017;162:511-22. [PMID: 27837864 DOI: 10.1016/j.talanta.2016.10.050] [Cited by in Crossref: 83] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
25 Mazloum-ardakani M, Hosseinzadeh L, Khoshroo A. Ultrasensitive Electrochemical Immunosensor for Detection of Tumor Necrosis Factor-α Based on Functionalized MWCNT-Gold Nanoparticle/Ionic Liquid Nanocomposite. Electroanalysis 2015;27:2518-26. [DOI: 10.1002/elan.201500104] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
26 Sarakhman O, Benková A, Švorc Ľ. A modern and powerful electrochemical sensing platform for purines determination: Voltammetric determination of uric acid and caffeine in biological samples on miniaturized thick-film boron-doped diamond electrode. Microchemical Journal 2022;175:107132. [DOI: 10.1016/j.microc.2021.107132] [Reference Citation Analysis]
27 Stanković DM, Ognjanović M, Espinosa A, del Puerto Morales M, Bessais L, Zehani K, Antić B, Dojcinović B. Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach. Electrocatalysis 2019;10:663-71. [DOI: 10.1007/s12678-019-00554-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
28 de Araujo Andreotti IA, Orzari LO, Camargo JR, Faria RC, Marcolino-junior LH, Bergamini MF, Gatti A, Janegitz BC. Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. Journal of Electroanalytical Chemistry 2019;840:109-16. [DOI: 10.1016/j.jelechem.2019.03.059] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
29 Navratil R, Kotzianova A, Halouzka V, Opletal T, Triskova I, Trnkova L, Hrbac J. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study. Journal of Electroanalytical Chemistry 2016;783:152-60. [DOI: 10.1016/j.jelechem.2016.11.030] [Cited by in Crossref: 49] [Cited by in F6Publishing: 16] [Article Influence: 8.2] [Reference Citation Analysis]
30 Singh S, Tuteja SK, Sillu D, Deep A, Suri CR. Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 2016;183:1729-38. [DOI: 10.1007/s00604-016-1803-x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
31 Shi L, Layani M, Cai X, Zhao H, Magdassi S, Lan M. An inkjet printed Ag electrode fabricated on plastic substrate with a chemical sintering approach for the electrochemical sensing of hydrogen peroxide. Sensors and Actuators B: Chemical 2018;256:938-45. [DOI: 10.1016/j.snb.2017.10.035] [Cited by in Crossref: 46] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
32 Irkham, Rais RR, Ivandini TA, Fiorani A, Einaga Y. Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Anal Chem 2021;93:2336-41. [DOI: 10.1021/acs.analchem.0c04212] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Kant T, Shrivas K, Dewangan K, Kumar A, Jaiswal N, Deb M, Pervez S. Design and development of conductive nanomaterials for electrochemical sensors: a modern approach. Materials Today Chemistry 2022;24:100769. [DOI: 10.1016/j.mtchem.2021.100769] [Reference Citation Analysis]
34 Stan D, Mirica A, Iosub R, Stan D, Mincu NB, Gheorghe M, Avram M, Adiaconita B, Craciun G, Bocancia Mateescu AL. What Is the Optimal Method for Cleaning Screen-Printed Electrodes? Processes 2022;10:723. [DOI: 10.3390/pr10040723] [Reference Citation Analysis]
35 Zhan X, Hu G, Wagberg T, Zhang D, Zhou P. A Label-Free Electrochemical Aptasensor for the Rapid Detection of Tetracycline Based on Ordered Mesoporous Carbon–Fe3O4. Aust J Chem 2018;71:170. [DOI: 10.1071/ch17503] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Lowry N, McLister A, McCreadie K, Davis J. An electronic approach to minimising moisture-associated skin damage in ostomy patients. Med Hypotheses 2015;85:192-6. [PMID: 25981876 DOI: 10.1016/j.mehy.2015.04.031] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
37 Sedki M, Shen Y, Mulchandani A. Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosensors and Bioelectronics 2021;176:112941. [DOI: 10.1016/j.bios.2020.112941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sens 2017;2:616-20. [PMID: 28723173 DOI: 10.1021/acssensors.7b00066] [Cited by in Crossref: 111] [Cited by in F6Publishing: 96] [Article Influence: 22.2] [Reference Citation Analysis]
39 Pérez-ràfols C, Serrano N, Díaz-cruz JM, Ariño C, Esteban M. Simultaneous determination of Tl(I) and In(III) using a voltammetric sensor array. Sensors and Actuators B: Chemical 2017;245:18-24. [DOI: 10.1016/j.snb.2017.01.089] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 4.4] [Reference Citation Analysis]
40 Vajhadin F, Mazloum-Ardakani M, Sanati A, Haghniaz R, Travas-Sejdic J. Optical cytosensors for the detection of circulating tumour cells. J Mater Chem B 2022. [PMID: 35107117 DOI: 10.1039/d1tb02370e] [Reference Citation Analysis]
41 Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv Sci (Weinh) 2020;7:1902980. [PMID: 32670744 DOI: 10.1002/advs.201902980] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
42 Roushani M, Shahdost-fard F. Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite. Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-2709-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
43 Mehmeti E, Stanković DM, Chaiyo S, Zavasnik J, Žagar K, Kalcher K. Wiring of glucose oxidase with graphene nanoribbons: an electrochemical third generation glucose biosensor. Microchim Acta 2017;184:1127-34. [DOI: 10.1007/s00604-017-2115-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 7.2] [Reference Citation Analysis]
44 Suresh RR, Lakshmanakumar M, Arockia Jayalatha JBB, Rajan KS, Sethuraman S, Krishnan UM, Rayappan JBB. Fabrication of screen-printed electrodes: opportunities and challenges. J Mater Sci 2021;56:8951-9006. [DOI: 10.1007/s10853-020-05499-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
45 Niu P, Fernández-sánchez C, Gich M, Navarro-hernández C, Fanjul-bolado P, Roig A. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim Acta 2016;183:617-23. [DOI: 10.1007/s00604-015-1684-4] [Cited by in Crossref: 55] [Cited by in F6Publishing: 27] [Article Influence: 7.9] [Reference Citation Analysis]
46 Shaikh MO, Zhu PY, Wang CC, Du YC, Chuang CH. Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosens Bioelectron 2019;126:572-80. [PMID: 30500772 DOI: 10.1016/j.bios.2018.11.035] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
47 Hasan MA, Prajwal K, Sahu DN, Prasad A, Dey A, Rajendra A. A facile and combined methodology to fabricate sputtered thin film micro-patterns for heater/sensor applications utilizing CO 2 laser-cut masks. Surface Engineering 2021;37:1133-42. [DOI: 10.1080/02670844.2021.1942610] [Reference Citation Analysis]
48 Amor-gutiérrez O, Rama EC, Fernández-abedul MT, Costa-garcía A. Bioelectroanalysis in a Drop: Construction of a Glucose Biosensor. J Chem Educ 2017;94:806-12. [DOI: 10.1021/acs.jchemed.6b00948] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
49 Mohamad Nor N, Abdul Razak K, Lockman Z. Physical and Electrochemical Properties of Iron Oxide Nanoparticles-modified Electrode for Amperometric Glucose Detection. Electrochimica Acta 2017;248:160-8. [DOI: 10.1016/j.electacta.2017.07.097] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 3.6] [Reference Citation Analysis]
50 Desmet C, Marquette CA, Blum LJ, Doumèche B. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosensors and Bioelectronics 2016;76:145-63. [DOI: 10.1016/j.bios.2015.06.052] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 12.5] [Reference Citation Analysis]
51 Jaiswal N, Tiwari I. Recent build outs in electroanalytical biosensors based on carbon-nanomaterial modified screen printed electrode platforms. Anal Methods 2017;9:3895-907. [DOI: 10.1039/c7ay01276d] [Cited by in Crossref: 29] [Article Influence: 5.8] [Reference Citation Analysis]
52 Aymard C, Kanso H, Serrano MJ, Pagán R, Noguer T, Istamboulie G. Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples. Food Chem 2022;370:131016. [PMID: 34507208 DOI: 10.1016/j.foodchem.2021.131016] [Reference Citation Analysis]
53 Li X, Zhao H, Shi L, Zhu X, Lan M, Zhang Q, Hugh Fan Z. Electrochemical sensing of nicotine using screen-printed carbon electrodes modified with nitrogen-doped graphene sheets. Journal of Electroanalytical Chemistry 2017;784:77-84. [DOI: 10.1016/j.jelechem.2016.12.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 16] [Article Influence: 7.6] [Reference Citation Analysis]
54 Rapini R, Cincinelli A, Marrazza G. Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 2016;161:15-21. [PMID: 27769391 DOI: 10.1016/j.talanta.2016.08.026] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 9.0] [Reference Citation Analysis]
55 Antherjanam S, Saraswathyamma B, Krishnan RG, Gopakumar GM. Electrochemical sensors as a versatile tool for the quantitative analysis of Vitamin B12. Chem Pap 2021;75:2981-95. [DOI: 10.1007/s11696-021-01574-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Sierra T, González MC, Moreno B, Crevillen AG, Escarpa A. Total α1-acid glycoprotein determination in serum samples using disposable screen-printed electrodes and osmium (VI) as electrochemical tag. Talanta 2018;180:206-10. [DOI: 10.1016/j.talanta.2017.12.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
57 Pérez-ràfols C, Gómez A, Serrano N, Díaz-cruz JM, Ariño C, Esteban M. A Voltammetric Electronic Tongue Based on Commercial Screen-printed Electrodes for the Analysis of Aminothiols by Differential Pulse Voltammetry. Electroanalysis 2017;29:1559-65. [DOI: 10.1002/elan.201700053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 González-sánchez M, Gómez-monedero B, Agrisuelas J, Iniesta J, Valero E. Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. Journal of Electroanalytical Chemistry 2019;839:75-82. [DOI: 10.1016/j.jelechem.2019.03.026] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
59 Pur MRK, Hosseini M, Faridbod F, Ganjali MR. Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Microchim Acta 2017;184:3529-37. [DOI: 10.1007/s00604-017-2385-y] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 6.2] [Reference Citation Analysis]
60 Reizabal A, Castro N, Pereira N, Costa CM, Pérez L, Vilas-vilela JL, Lanceros-méndez S. Silk Fibroin Nanocomposites with Indium Tin Oxide toward Sustainable Capacitive Touch Sensing Applications. ACS Appl Electron Mater 2022;4:1901-9. [DOI: 10.1021/acsaelm.2c00100] [Reference Citation Analysis]
61 Pinyou P, Conzuelo F, Sliozberg K, Vivekananthan J, Contin A, Pöller S, Plumeré N, Schuhmann W. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochemistry 2015;106:22-7. [DOI: 10.1016/j.bioelechem.2015.04.003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 7.1] [Reference Citation Analysis]
62 Uzunoglu A, Ramirez I, Andreasen E, Stanciu LA. Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles. Microchim Acta 2016;183:1667-75. [DOI: 10.1007/s00604-016-1796-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
63 Ding H, He P, Yang J, Liu C, Zhao H, Derby B. Water-based highly conductive graphene inks for fully printed humidity sensors. J Phys D: Appl Phys 2020;53:455304. [DOI: 10.1088/1361-6463/aba78a] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Shi L, Niu X, Liu T, Zhao H, Lan M. Electrocatalytic sensing of hydrogen peroxide using a screen printed carbon electrode modified with nitrogen-doped graphene nanoribbons. Microchim Acta 2015;182:2485-93. [DOI: 10.1007/s00604-015-1605-6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
65 Kinnamon DS, Krishnan S, Brosler S, Sun E, Prasad S. Screen Printed Graphene Oxide Textile Biosensor for Applications in Inexpensive and Wearable Point-of-Exposure Detection of Influenza for At-Risk Populations. J Electrochem Soc 2018;165:B3084-90. [DOI: 10.1149/2.0131808jes] [Cited by in Crossref: 37] [Cited by in F6Publishing: 14] [Article Influence: 9.3] [Reference Citation Analysis]
66 Goode JA, Rushworth JV, Millner PA. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir 2015;31:6267-76. [PMID: 25402969 DOI: 10.1021/la503533g] [Cited by in Crossref: 136] [Cited by in F6Publishing: 100] [Article Influence: 17.0] [Reference Citation Analysis]
67 Rapini R, Marrazza G. Biosensor Potential in Pesticide Monitoring. Biosensors for Sustainable Food - New Opportunities and Technical Challenges. Elsevier; 2016. pp. 3-31. [DOI: 10.1016/bs.coac.2016.03.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
68 Amor-gutiérrez O, Costa Rama E, Costa-garcía A, Fernández-abedul M. Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes. Biosensors and Bioelectronics 2017;93:40-5. [DOI: 10.1016/j.bios.2016.11.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 9.6] [Reference Citation Analysis]
69 Veerapandian M, Hunter R, Neethirajan S. Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta 2016;155:250-7. [DOI: 10.1016/j.talanta.2016.04.047] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 7.7] [Reference Citation Analysis]
70 Ferreira NS, Moreira AP, de Sá M, Sales MGF. New electrochemically-derived plastic antibody on a simple conductive paper support for protein detection: Application to BSA. Sensors and Actuators B: Chemical 2017;243:1127-36. [DOI: 10.1016/j.snb.2016.12.074] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
71 Istrate O, Rotariu L, Bala C. Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Microchim Acta 2016;183:57-65. [DOI: 10.1007/s00604-015-1595-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
72 Abdorahim M, Rabiee M, Alhosseini SN, Tahriri M, Yazdanpanah S, Alavi SH, Tayebi L. Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review. TrAC Trends in Analytical Chemistry 2016;82:337-47. [DOI: 10.1016/j.trac.2016.06.015] [Cited by in Crossref: 45] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
73 Kap Ö, Kılıç V, Hardy JG, Horzum N. Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst 2021;146:2784-806. [PMID: 33949379 DOI: 10.1039/d0an02031a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
74 Zhang P, Huang H, Wang N, Li H, Shen D, Ma H. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers. Microchim Acta 2017;184:4037-45. [DOI: 10.1007/s00604-017-2437-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
75 Kunpatee K, Chamsai P, Mehmeti E, Stankovic DM, Ortner A, Kalcher K, Samphao A. A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis. Journal of Electroanalytical Chemistry 2019;855:113630. [DOI: 10.1016/j.jelechem.2019.113630] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
76 Habekost A. Spectroelectrochemistry of Selected Substances – A Contribution to Higher Education Didactics. CHEMKON 2020;27:268-74. [DOI: 10.1002/ckon.202000003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Alves GMS, Rocha LS, Soares HMVM. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review. Talanta 2017;175:53-68. [PMID: 28842029 DOI: 10.1016/j.talanta.2017.06.077] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 5.2] [Reference Citation Analysis]
78 Clark KM, Henry CS. Thermoplastic Electrode (TPE)‐based Enzymatic Glucose Sensor Using Polycaprolactone‐graphite Composites. Electroanalysis. [DOI: 10.1002/elan.202100446] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Mazloum-ardakani M, Hosseinzadeh L. Highly-sensitive label-free immunosensor for tumor necrosis factor α based on Ag@Pt core–shell nanoparticles supported on MWCNTs as an efficient electrocatalyst nanocomposite. RSC Adv 2015;5:70781-6. [DOI: 10.1039/c5ra08016a] [Cited by in Crossref: 21] [Article Influence: 3.0] [Reference Citation Analysis]
80 Jurado-sánchez B, Escarpa A. Janus Micromotors for Electrochemical Sensing and Biosensing Applications: A Review. Electroanalysis 2017;29:14-23. [DOI: 10.1002/elan.201600567] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 7.7] [Reference Citation Analysis]
81 Gonzalez-macia L, Killard A. Screen printing and other scalable point of care (POC) biosensor processing technologies. Medical Biosensors for Point of Care (POC) Applications. Elsevier; 2017. pp. 69-98. [DOI: 10.1016/b978-0-08-100072-4.00004-6] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
82 Madasamy T, Santschi C, Martin OJF. A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles. Analyst 2015;140:6071-8. [DOI: 10.1039/c5an00752f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.9] [Reference Citation Analysis]
83 Ariño C, Serrano N, Díaz-cruz JM, Esteban M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Analytica Chimica Acta 2017;990:11-53. [DOI: 10.1016/j.aca.2017.07.069] [Cited by in Crossref: 79] [Cited by in F6Publishing: 33] [Article Influence: 15.8] [Reference Citation Analysis]
84 Dias AA, Chagas CLS, Silva-Neto HA, Lobo-Junior EO, Sgobbi LF, de Araujo WR, Paixão TRLC, Coltro WKT. Environmentally Friendly Manufacturing of Flexible Graphite Electrodes for a Wearable Device Monitoring Zinc in Sweat. ACS Appl Mater Interfaces 2019;11:39484-92. [PMID: 31524381 DOI: 10.1021/acsami.9b12797] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
85 Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q. Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: Application to the determination of carcinoembryonic antigen. Microchim Acta 2015;182:1421-9. [DOI: 10.1007/s00604-015-1473-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
86 Cinti S. Polymeric Materials for Printed-Based Electroanalytical (Bio)Applications. Chemosensors 2017;5:31. [DOI: 10.3390/chemosensors5040031] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
87 Hua QT, Ruecha N, Hiruta Y, Citterio D. Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis. Anal Methods 2019;11:3439-45. [DOI: 10.1039/c9ay00852g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
88 Buffon E, Stradiotto NR. A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels. Microchemical Journal 2021;167:106339. [DOI: 10.1016/j.microc.2021.106339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
89 Cardoso AR, Marques AC, Santos L, Carvalho AF, Costa FM, Martins R, Sales MGF, Fortunato E. Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosensors and Bioelectronics 2019;124-125:167-75. [DOI: 10.1016/j.bios.2018.10.015] [Cited by in Crossref: 61] [Cited by in F6Publishing: 36] [Article Influence: 20.3] [Reference Citation Analysis]
90 Mora-Granados M, Crevillen AG, González-Gómez D, Gallego-Picó A. Disposable electrochemical sensor combined with molecularly imprinted solid-phase extraction for catabolites detection of flavan-3-ol in urine samples. Talanta 2021;235:122734. [PMID: 34517603 DOI: 10.1016/j.talanta.2021.122734] [Reference Citation Analysis]
91 Rabti A, Argoubi W, Raouafi N. Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase. Microchim Acta 2016;183:1227-33. [DOI: 10.1007/s00604-016-1753-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
92 Rosal M, Cetó X, Serrano N, Ariño C, Esteban M, Díaz-cruz JM. Dimethylglyoxime modified screen-printed electrodes for nickel determination. Journal of Electroanalytical Chemistry 2019;839:83-9. [DOI: 10.1016/j.jelechem.2019.03.025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
93 Rawashdeh1 I, Al-fandi MG, Makableh Y, Harahsha T. Developing a nano-biosensor for early detection of pancreatic cancer. SR 2020;41:93-100. [DOI: 10.1108/sr-01-2020-0004] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Goh GL, Tay MF, Lee JM, Ho JS, Sim LN, Yeong WY, Chong TH. Potential of Printed Electrodes for Electrochemical Impedance Spectroscopy (EIS): Toward Membrane Fouling Detection. Adv Electron Mater 2021;7:2100043. [DOI: 10.1002/aelm.202100043] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Chen J, Li Y, Yu M, Lee H. Multiwalled carbon nanotubes /reduced graphene oxide nanocomposite electrode for electroanalytical determination of bisphenol A, 8-hydroxy-2’-deoxyguanosine and hydroquinone in urine. International Journal of Environmental Analytical Chemistry 2020;100:774-88. [DOI: 10.1080/03067319.2019.1640874] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
96 Deroco PB, Fatibello-filho O, Arduini F, Moscone D. Electrochemical determination of capsaicin in pepper samples using sustainable paper-based screen-printed bulk modified with carbon black. Electrochimica Acta 2020;354:136628. [DOI: 10.1016/j.electacta.2020.136628] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
97 Svitková V, Labuda J. Construction of electrochemical DNA biosensors for investigation of potential risk chemical and physical agents. Monatsh Chem 2017;148:1569-79. [DOI: 10.1007/s00706-017-2012-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
98 Sun D, Lu J, Chen D, Jiang Y, Wang Z, Qin W, Yu Y, Chen Z, Zhang Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sensors and Actuators B: Chemical 2018;268:359-67. [DOI: 10.1016/j.snb.2018.04.142] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 10.8] [Reference Citation Analysis]
99 Dhara K, Mahapatra DR. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchemical Journal 2020;156:104857. [DOI: 10.1016/j.microc.2020.104857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
100 Khorablou Z, Shahdost-Fard F, Razmi H, Yola ML, Karimi-Maleh H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere 2021;278:130393. [PMID: 33823350 DOI: 10.1016/j.chemosphere.2021.130393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
101 Fava EL, Prado TMD, Garcia-filho A, Silva TA, Cincotto FH, Cruz de Moraes F, Faria RC, Fatibello-filho O. Non-enzymatic electrochemical determination of creatinine using a novel screen-printed microcell. Talanta 2020;207:120277. [DOI: 10.1016/j.talanta.2019.120277] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
102 Kasi V, Sedaghat S, Alcaraz AM, Maruthamuthu MK, Heredia-Rivera U, Nejati S, Nguyen J, Rahimi R. Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition. ACS Appl Mater Interfaces 2022. [PMID: 35142483 DOI: 10.1021/acsami.1c19805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Rapini R, Marrazza G. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017;118:47-61. [PMID: 28715665 DOI: 10.1016/j.bioelechem.2017.07.004] [Cited by in Crossref: 83] [Cited by in F6Publishing: 56] [Article Influence: 16.6] [Reference Citation Analysis]
104 Liu Y, Li J, Chang G, Zhu R, He H, Zhang X, Wang S. A novel electrochemical method based on screen-printed electrodes and magnetic beads for detection of trinucleotide repeat sequence d(CAG) n. New J Chem 2018;42:9757-63. [DOI: 10.1039/c8nj00443a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020;120:12903-93. [DOI: 10.1021/acs.chemrev.0c00472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
106 Ahmad R, Wolfbeis OS, Hahn Y, Alshareef HN, Torsi L, Salama KN. Deposition of nanomaterials: A crucial step in biosensor fabrication. Materials Today Communications 2018;17:289-321. [DOI: 10.1016/j.mtcomm.2018.09.024] [Cited by in Crossref: 64] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
107 Mazloum-ardakani M, Hosseinzadeh L. A Sensitive Electrochemical Aptasensor for TNF-α Based on Bimetallic Ag@Pt Core-Shell Nanoparticle Functionalized Graphene Nanostructures as Labels for Signal Amplification. J Electrochem Soc 2016;163:B119-24. [DOI: 10.1149/2.0241605jes] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
108 Petryayeva E, Algar WR. Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Adv 2015;5:22256-82. [DOI: 10.1039/c4ra15036h] [Cited by in Crossref: 73] [Cited by in F6Publishing: 1] [Article Influence: 10.4] [Reference Citation Analysis]
109 Beitollahi H, Mohammadi SZ, Safaei M, Tajik S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Anal Methods 2020;12:1547-60. [DOI: 10.1039/c9ay02598g] [Cited by in Crossref: 25] [Article Influence: 12.5] [Reference Citation Analysis]
110 Birch C, Landers J. Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review. Micromachines 2017;8:76. [DOI: 10.3390/mi8030076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Cinti S, Arduini F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens Bioelectron 2017;89:107-22. [PMID: 27522348 DOI: 10.1016/j.bios.2016.07.005] [Cited by in Crossref: 113] [Cited by in F6Publishing: 72] [Article Influence: 18.8] [Reference Citation Analysis]
112 Salimian R, Shahrokhian S, Panahi S. Enhanced Electrochemical Activity of a Hollow Carbon Sphere/Polyaniline-Based Electrochemical Biosensor for HBV DNA Marker Detection. ACS Biomater Sci Eng 2019;5:2587-94. [DOI: 10.1021/acsbiomaterials.8b01520] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
113 Hassani S, Akmal MR, Salek-Maghsoudi A, Rahmani S, Ganjali MR, Norouzi P, Abdollahi M. Novel label-free electrochemical aptasensor for determination of Diazinon using gold nanoparticles-modified screen-printed gold electrode. Biosens Bioelectron 2018;120:122-8. [PMID: 30172234 DOI: 10.1016/j.bios.2018.08.041] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 11.8] [Reference Citation Analysis]
114 Hori N, Chikae M, Kirimura H, Takamura Y. Design of dual working electrodes for concentration process in metalloimmunoassay. Biomed Microdevices 2016;18:86. [PMID: 27572238 DOI: 10.1007/s10544-016-0114-7] [Reference Citation Analysis]
115 Koo KM, Wee EJH, Wang Y, Trau M. Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. Lab Chip 2017;17:3200-20. [DOI: 10.1039/c7lc00587c] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Article Influence: 7.6] [Reference Citation Analysis]
116 Chaisiwamongkhol K, Batchelor-mcauley C, Sokolov SV, Holter J, Young NP, Compton RG. Optimising carbon electrode materials for adsorptive stripping voltammetry. Applied Materials Today 2017;7:60-6. [DOI: 10.1016/j.apmt.2017.02.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
117 Sobhan A, Oh J, Park M, Lee J. Reusability of a single-walled carbon nanotube-based biosensor for detecting peanut allergens and Y. enterocolitica. Microelectronic Engineering 2020;225:111281. [DOI: 10.1016/j.mee.2020.111281] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
118 Sun Y, Lathwal S, Wang Y, Fu L, Olszewski M, Fantin M, Enciso AE, Szczepaniak G, Das S, Matyjaszewski K. Preparation of Well-Defined Polymers and DNA-Polymer Bioconjugates via Small-Volume eATRP in the Presence of Air. ACS Macro Lett 2019;8:603-9. [PMID: 35619358 DOI: 10.1021/acsmacrolett.9b00159] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 12.3] [Reference Citation Analysis]
119 Soysa HSM, Rattanopas S, Teanphonkrang S, Quek T, Phomphrai K, Schulte A. Biopolymer Cooperation for Sustainable High‐Performance Oxidase‐Based Biosensing with the Simplest Possible Readout of Substrate Conversion. Adv Mater Technol 2021;6:2100096. [DOI: 10.1002/admt.202100096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Regiart M, Fernández O, Vicario A, Villarroel-rocha J, Sapag K, Messina GA, Raba J, Bertolino FA. Mesoporous immunosensor applied to zearalenone determination in Amaranthus cruentus seeds. Microchemical Journal 2018;141:388-94. [DOI: 10.1016/j.microc.2018.05.051] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
121 Dechtrirat D, Sookcharoenpinyo B, Prajongtat P, Sriprachuabwong C, Sanguankiat A, Tuantranont A, Hannongbua S. An electrochemical MIP sensor for selective detection of salbutamol based on a graphene/PEDOT:PSS modified screen printed carbon electrode. RSC Adv 2018;8:206-12. [DOI: 10.1039/c7ra09601a] [Cited by in Crossref: 33] [Article Influence: 8.3] [Reference Citation Analysis]
122 Du CX, Han L, Dong SL, Li LH, Wei Y. A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance. IOP Conf Ser : Mater Sci Eng 2016;137:012060. [DOI: 10.1088/1757-899x/137/1/012060] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
123 Khoshroo A, Mazloum-ardakani M, Forat-yazdi M. Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors and Actuators B: Chemical 2018;255:580-7. [DOI: 10.1016/j.snb.2017.08.114] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
124 Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, Sun X, Li C, Dong B, Wang L, Xu L. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC Trends in Analytical Chemistry 2021;140:116281. [DOI: 10.1016/j.trac.2021.116281] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
125 Zamani M, Robson JM, Fan A, Bono MS Jr, Furst AL, Klapperich CM. Electrochemical Strategy for Low-Cost Viral Detection. ACS Cent Sci 2021;7:963-72. [PMID: 34235257 DOI: 10.1021/acscentsci.1c00186] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
126 Sierra T, Crevillen AG, Escarpa A. Electrochemical sensor for the assessment of carbohydrate deficient transferrin: Application to diagnosis of congenital disorders of glycosilation. Biosens Bioelectron 2021;179:113098. [PMID: 33636501 DOI: 10.1016/j.bios.2021.113098] [Reference Citation Analysis]
127 Campuzano S, Pedrero M, González-cortés A, Yáñez-sedeño P, Pingarrón JM. Electrochemical biosensors for autoantibodies in autoimmune and cancer diseases. Anal Methods 2019;11:871-87. [DOI: 10.1039/c8ay02742k] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
128 Yadav M, Singh G, Lata S. Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. J Anal Test . [DOI: 10.1007/s41664-022-00209-z] [Reference Citation Analysis]
129 Revenga-parra M, Villa-manso AM, Briones M, Mateo-martí E, Martínez-periñán E, Lorenzo E, Pariente F. Bioelectrocatalytic platforms based on chemically modified nanodiamonds by diazonium salt chemistry. Electrochimica Acta 2020;357:136876. [DOI: 10.1016/j.electacta.2020.136876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Xu S, Qin X, Zhang X, Zhang C. A third-generation biosensor for hydrogen peroxide based on the immobilization of horseradish peroxidase on a disposable carbon nanotubes modified screen–printed electrode. Microchim Acta 2015;182:1241-6. [DOI: 10.1007/s00604-014-1444-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
131 Zhang Q, Zhang C, Ying Y, Ping J. An easy-fabricated ordered mesoporous carbon-based electrochemical sensor for the analysis of trans-resveratrol in red wines. Food Control 2021;129:108203. [DOI: 10.1016/j.foodcont.2021.108203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Gusmão R, López-puente V, Pastoriza-santos I, Pérez-juste J, Proença MF, Bento F, Geraldo D, Paiva MC, González-romero E. Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. RSC Adv 2015;5:5024-31. [DOI: 10.1039/c4ra12660b] [Cited by in Crossref: 21] [Article Influence: 3.0] [Reference Citation Analysis]
133 De Rycke E, Stove C, Dubruel P, De Saeger S, Beloglazova N. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens Bioelectron 2020;169:112579. [PMID: 32947080 DOI: 10.1016/j.bios.2020.112579] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
134 Patri SB, Adarakatti PS, Malingappa P. Silver Nanoparticles-Chitosan Composite Embedded Graphite Screen-Printed Electrodes as a Novel Electrochemical Platform in the Measurement of Trace Level Nitrite: Application to Milk Powder Samples. CAC 2018;15:56-65. [DOI: 10.2174/1573411014666180703142146] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Mazloum-ardakani M, Amin-sadrabadi E, Khoshroo A, Salavati-niasari M. Electrocatalytic Properties of Vanadyl Complex in Graphite Nanocomposite and its Enhanced Electrochemical Catalysis Properties for Levodopa Oxidation. J Inorg Organomet Polym 2015;25:1576-81. [DOI: 10.1007/s10904-015-0277-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
136 Carneiro MC, Moreira FT, Dutra RA, Fernandes R, Sales MGF. Homemade 3-carbon electrode system for electrochemical sensing: Application to microRNA detection. Microchemical Journal 2018;138:35-44. [DOI: 10.1016/j.microc.2017.12.026] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
137 da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola J, de Moraes ACM, Kubota LT. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017;4:778-94. [DOI: 10.1002/celc.201600758] [Cited by in Crossref: 115] [Cited by in F6Publishing: 66] [Article Influence: 23.0] [Reference Citation Analysis]
138 Mohd Asri MA, Mak WC, Norazman SA, Nordin AN. Low-cost and rapid prototyping of integrated electrochemical microfluidic platforms using consumer-grade off-the-shelf tools and materials. Lab Chip 2022. [PMID: 35293400 DOI: 10.1039/d1lc01100f] [Reference Citation Analysis]
139 Mazloum-ardakani M, Hosseinzadeh L, Khoshroo A. Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid. Journal of Electroanalytical Chemistry 2015;757:58-64. [DOI: 10.1016/j.jelechem.2015.09.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 37] [Article Influence: 8.1] [Reference Citation Analysis]
140 Othman AM, Wollenberger U. Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection. International Journal of Biological Macromolecules 2020;153:855-64. [DOI: 10.1016/j.ijbiomac.2020.03.049] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
141 Yang Y, Zeng Y, Tang C, Zhu X, Lu X, Liu L, Chen Z, Li L. Voltammetric determination of 5-hydroxytryptamine based on the use of platinum nanoparticles coated with molecularly imprinted silica. Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-2755-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
142 Al-shami A, Oweis RJ, Al-fandi MG. Developing an electrochemical immunosensor for early diagnosis of hepatocellular carcinoma. SR 2021;41:125-34. [DOI: 10.1108/sr-02-2020-0030] [Reference Citation Analysis]
143 Yomthiangthae P, Kondo T, Chailapakul O, Siangproh W. The effects of the supporting electrolyte on the simultaneous determination of vitamin B 2 , vitamin B 6 , and vitamin C using a modification-free screen-printed carbon electrode. New J Chem 2020;44:12603-12. [DOI: 10.1039/d0nj02175j] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
144 Yao Y, Wu H, Ping J. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chemistry 2019;274:8-15. [DOI: 10.1016/j.foodchem.2018.08.110] [Cited by in Crossref: 73] [Cited by in F6Publishing: 40] [Article Influence: 24.3] [Reference Citation Analysis]
145 Svitková V, Labuda J, Vyskočil V. Batch Injection Analysis with Amperometric Detection for DNA Biosensing Applications. Electroanalysis 2019;31:2001-6. [DOI: 10.1002/elan.201900279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
146 Pisoschi AM, Pop A, Iordache F, Stanca L, Bilteanu L, Serban AI. Antioxidant Determination with the Use of Carbon-Based Electrodes. Chemosensors 2021;9:72. [DOI: 10.3390/chemosensors9040072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
147 Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens Bioelectron 2015;74:30-6. [PMID: 26094037 DOI: 10.1016/j.bios.2015.05.072] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 7.1] [Reference Citation Analysis]
148 Kastenhofer J, Rajamanickam V, Libiseller-Egger J, Spadiut O. Monitoring and control of E. coli cell integrity. J Biotechnol 2021;329:1-12. [PMID: 33485861 DOI: 10.1016/j.jbiotec.2021.01.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
149 Li X, Ding C, Li X, Yang H, Liu S, Wang X, Zhang L, Sun Q, Liu X, Chen J. Electronic biopolymers: From molecular engineering to functional devices. Chemical Engineering Journal 2020;397:125499. [DOI: 10.1016/j.cej.2020.125499] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 8.5] [Reference Citation Analysis]
150 Lamas-ardisana PJ, Fanjul-bolado P, Costa-garcía A. Manufacture and evaluation of cup-stacked carbon nanofiber-modified screen printed electrodes as electrochemical tools. Journal of Electroanalytical Chemistry 2016;775:129-34. [DOI: 10.1016/j.jelechem.2016.04.036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
151 Mazloum-ardakani M, Khoshroo A, Hosseinzadeh L. Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sensors and Actuators B: Chemical 2015;214:132-7. [DOI: 10.1016/j.snb.2015.03.010] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
152 Kaçar C, Erden PE, Dalkiran B, İnal EK, Kiliç E. Amperometric biogenic amine biosensors based on Prussian blue, indium tin oxide nanoparticles and diamine oxidase– or monoamine oxidase–modified electrodes. Anal Bioanal Chem 2020;412:1933-46. [DOI: 10.1007/s00216-020-02448-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
153 Anshori I, Harimurti S, Rizalputri LN, Hartono MS, Althof RR, Handayani M, Mengko TLER, Yuliarto B. Modified screen-printed electrode using graphene ink for electrochemical sensor application. J Phys : Conf Ser 2021;1912:012022. [DOI: 10.1088/1742-6596/1912/1/012022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
154 Martín-yerga D, Rama EC, Costa-garcía A. Electrochemical Characterization of Ordered Mesoporous Carbon Screen-Printed Electrodes. J Electrochem Soc 2016;163:B176-9. [DOI: 10.1149/2.0871605jes] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
155 Marques AC, Cardoso AR, Martins R, Sales MGF, Fortunato E. Laser-Induced Graphene-Based Platforms for Dual Biorecognition of Molecules. ACS Appl Nano Mater 2020;3:2795-803. [DOI: 10.1021/acsanm.0c00117] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
156 Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, Jiang J, Liu GL, Liu Q. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors and Actuators B: Chemical 2016;222:994-1002. [DOI: 10.1016/j.snb.2015.09.041] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 10.7] [Reference Citation Analysis]
157 Sun A, Jia F, Zhang Y, Wang X. Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim Acta 2015;182:1169-75. [DOI: 10.1007/s00604-014-1440-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
158 Carneiro P, Morais S, do Carmo Pereira M. Biosensors on the road to early diagnostic and surveillance of Alzheimer's disease. Talanta 2020;211:120700. [PMID: 32070618 DOI: 10.1016/j.talanta.2019.120700] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
159 Zhang W, Guo Z, Chen Y, Cao Y. Nanomaterial Based Biosensors for Detection of Biomarkers of Exposure to OP Pesticides and Nerve Agents: A Review. Electroanalysis 2017;29:1206-13. [DOI: 10.1002/elan.201600748] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
160 Wu W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 2017;9:7342-72. [PMID: 28548146 DOI: 10.1039/c7nr01604b] [Cited by in Crossref: 267] [Cited by in F6Publishing: 30] [Article Influence: 66.8] [Reference Citation Analysis]
161 Islam MA, Atia MA, Macka M, Paull B, Mahbub P. Electrochemical characterisation of nanoparticulate zirconium dioxide-on-gold electrode for electrochemical detection in flow-based analytical systems. Electrochimica Acta 2019;318:61-8. [DOI: 10.1016/j.electacta.2019.06.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
162 Talib NAA, Salam F, Yusof NA, Alang Ahmad SA, Azid MZ, Mirad R, Sulaiman Y. Enhancing a clenbuterol immunosensor based on poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube performance using response surface methodology. RSC Adv 2018;8:15522-32. [DOI: 10.1039/c8ra00109j] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
163 Raghavan VS, O'Driscoll B, Bloor JM, Li B, Katare P, Sethi J, Gorthi SS, Jenkins D. Emerging graphene-based sensors for the detection of food adulterants and toxicants - A review. Food Chem 2021;355:129547. [PMID: 33773454 DOI: 10.1016/j.foodchem.2021.129547] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
164 Felix FS, Angnes L. Electrochemical immunosensors - A powerful tool for analytical applications. Biosens Bioelectron 2018;102:470-8. [PMID: 29182930 DOI: 10.1016/j.bios.2017.11.029] [Cited by in Crossref: 206] [Cited by in F6Publishing: 141] [Article Influence: 41.2] [Reference Citation Analysis]
165 Vishnu N, Kumar AS. Development of Prussian Blue and Fe(bpy)32+ hybrid modified pencil graphite electrodes utilizing its intrinsic iron for electroanalytical applications. Journal of Electroanalytical Chemistry 2017;786:145-53. [DOI: 10.1016/j.jelechem.2017.01.028] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
166 Aragó M, Ariño C, Dago À, Díaz-cruz JM, Esteban M. Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration. Talanta 2016;160:138-43. [DOI: 10.1016/j.talanta.2016.07.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
167 González-vargas C, Serrano N, Ariño C, Salazar R, Esteban M, Díaz-cruz JM. Voltammetric Determination of Anti-Hypertensive Drug Hydrochlorothiazide Using Screen-Printed Electrodes Modified with L-Glutamic Acid. Chemosensors 2017;5:25. [DOI: 10.3390/chemosensors5030025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
168 Vu QK, Tran QH, Vu NP, Anh T, Dang TTL, Matteo T, Nguyen THH. A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens. Materials Today Communications 2021;26:101726. [DOI: 10.1016/j.mtcomm.2020.101726] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 21.0] [Reference Citation Analysis]
169 Chelly S, Chelly M, Zribi R, Gdoura R, Bouaziz-Ketata H, Neri G. Electrochemical Detection of Dopamine and Riboflavine on a Screen-Printed Carbon Electrode Modified by AuNPs Derived from Rhanterium suaveolens Plant Extract. ACS Omega 2021;6:23666-75. [PMID: 34568646 DOI: 10.1021/acsomega.1c00793] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Hong Y, Wu M, Chen G, Dai Z, Zhang Y, Chen G, Dong X. 3D Printed Microfluidic Device with Microporous Mn 2 O 3 -Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Appl Mater Interfaces 2016;8:32940-7. [DOI: 10.1021/acsami.6b10464] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
171 Kovalyk A, Tananaiko O, Borets A, Etienne M, Walcarius A. Voltammetric and microscopic characteristics of MnO2 and silica-MnO2hybrid films electrodeposited on the surface of planar electrodes. Electrochimica Acta 2019;306:680-7. [DOI: 10.1016/j.electacta.2019.03.156] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
172 Estevez-canales M, Berná A, Borjas Z, Esteve-núñez A. Screen-Printed Electrodes: New Tools for Developing Microbial Electrochemistry at Microscale Level. Energies 2015;8:13211-21. [DOI: 10.3390/en81112366] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
173 Wills AG, Charvet S, Battilocchio C, Scarborough CC, Wheelhouse KMP, Poole DL, Carson N, Vantourout JC. High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Org Process Res Dev 2021;25:2587-600. [DOI: 10.1021/acs.oprd.1c00167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
174 Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021;50:13012-89. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
175 Blandón-naranjo L, Della pelle F, Vázquez MV, Gallego J, Santamaría A, Alzate-tobón M, Compagnone D. Electrochemical Behaviour of Microwave-assisted Oxidized MWCNTs Based Disposable Electrodes: Proposal of a NADH Electrochemical Sensor. Electroanalysis 2018;30:509-16. [DOI: 10.1002/elan.201700674] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
176 Hua Z, Qin Q, Bai X, Huang X, Zhang Q. An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol. RSC Adv 2016;6:25427-34. [DOI: 10.1039/c5ra27563f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 2.2] [Reference Citation Analysis]
177 Garg D, Singh M, Verma N, Monika. Review on recent advances in fabrication of enzymatic and chemical sensors for hypoxanthine. Food Chem 2021;375:131839. [PMID: 34968951 DOI: 10.1016/j.foodchem.2021.131839] [Reference Citation Analysis]
178 Mohtar LG, Aranda P, Messina GA, Nazareno MA, Pereira SV, Raba J, Bertolino FA. Amperometric biosensor based on laccase immobilized onto a nanostructured screen-printed electrode for determination of polyphenols in propolis. Microchemical Journal 2019;144:13-8. [DOI: 10.1016/j.microc.2018.08.038] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
179 Mohamed HM. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments. TrAC Trends in Analytical Chemistry 2016;82:1-11. [DOI: 10.1016/j.trac.2016.02.010] [Cited by in Crossref: 79] [Cited by in F6Publishing: 37] [Article Influence: 13.2] [Reference Citation Analysis]
180 Martín-yerga D, Costa-garcía A. Towards a blocking-free electrochemical immunosensing strategy for anti-transglutaminase antibodies using screen-printed electrodes. Bioelectrochemistry 2015;105:88-94. [DOI: 10.1016/j.bioelechem.2015.05.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
181 Barton J, García MBG, Santos DH, Fanjul-bolado P, Ribotti A, Mccaul M, Diamond D, Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 2016;183:503-17. [DOI: 10.1007/s00604-015-1651-0] [Cited by in Crossref: 135] [Cited by in F6Publishing: 74] [Article Influence: 19.3] [Reference Citation Analysis]
182 Mazloum-ardakani M, Ahmadi SH, Safaei Mahmoudabadi Z, Khoshroo A. Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 2016;91:162-7. [DOI: 10.1016/j.measurement.2016.05.035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
183 Khoshroo A, Fattahi A. Electrochemical analysis of anionic analytes in weakly supported media using electron transfer promotion effect: a case study on nitrite. Sci Rep 2020;10:14511. [PMID: 32883970 DOI: 10.1038/s41598-020-71365-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
184 Bernardo-boongaling VRR, Serrano N, García-guzmán JJ, Palacios-santander JM, Díaz-cruz JM. Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. Journal of Electroanalytical Chemistry 2019;847:113184. [DOI: 10.1016/j.jelechem.2019.05.066] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
185 Power AC, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnology Reviews 2018;7:19-41. [DOI: 10.1515/ntrev-2017-0160] [Cited by in Crossref: 89] [Cited by in F6Publishing: 40] [Article Influence: 17.8] [Reference Citation Analysis]
186 Pérez-ràfols C, Trechera P, Serrano N, Díaz-cruz JM, Ariño C, Esteban M. Determination of Pd(II) using an antimony film coated on a screen-printed electrode by adsorptive stripping voltammetry. Talanta 2017;167:1-7. [DOI: 10.1016/j.talanta.2017.01.084] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
187 Kanyong P, Rawlinson S, Davis J. Simultaneous electrochemical determination of dopamine and 5-hydroxyindoleacetic acid in urine using a screen-printed graphite electrode modified with gold nanoparticles. Anal Bioanal Chem. [DOI: 10.1007/s00216-016-9351-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
188 Rama EC, Costa-garcía A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. Electroanalysis 2016;28:1700-15. [DOI: 10.1002/elan.201600126] [Cited by in Crossref: 49] [Cited by in F6Publishing: 14] [Article Influence: 8.2] [Reference Citation Analysis]
189 Yu C, Cao Q, Tu T, Cai Y, Fang L, Ye X, Liang B. Differential coulometry based on dual screen-printed strips for high accuracy levodopa determination towards Parkinson's disease management. J Pharm Biomed Anal 2020;190:113498. [PMID: 32781320 DOI: 10.1016/j.jpba.2020.113498] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Kanso H, Begoña gonzález garcía M, Ma S, Ludwig R, Fanjul bolado P, Hernández santos D. Dual Biosensor for Simultaneous Monitoring of Lactate and Glucose Based on Thin-layer Flow Cell Screen-printed Electrode. Electroanalysis 2017;29:87-92. [DOI: 10.1002/elan.201600487] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
191 Mazloum-ardakani M, Dehghani Z, Khoshroo A. Self-assembled monolayers of organosulfur derivative on gold nanoparticles as electrochemical sensor for determination of isoprenaline. J IRAN CHEM SOC 2018;15:1061-8. [DOI: 10.1007/s13738-018-1303-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
192 Jamieson O, Mecozzi F, Crapnell RD, Battell W, Hudson A, Novakovic K, Sachdeva A, Canfarotta F, Herdes C, Banks CE, Snyder H, Peeters M. Approaches to the Rational Design of Molecularly Imprinted Polymers Developed for the Selective Extraction or Detection of Antibiotics in Environmental and Food Samples. Phys Status Solidi A 2021;218:2100021. [DOI: 10.1002/pssa.202100021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
193 Wu S, Chandra Sekar N, Tan SN, Xie H, Ng SH. Determination of chromium( iii ) by differential pulse stripping voltammetry at a chitosan–gold nanocomposite modified screen printed electrode. Anal Methods 2016;8:962-7. [DOI: 10.1039/c5ay03291a] [Cited by in Crossref: 17] [Article Influence: 2.8] [Reference Citation Analysis]
194 He J, Zhong Y, Xu Q, Sun H, Zhou W, Shao Z. Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. J Electrochem Soc 2018;165:B543-50. [DOI: 10.1149/2.0151813jes] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
195 Fei J, Dou W, Zhao G. Amperometric immunoassay for the detection of Salmonella pullorum using a screen - printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Microchim Acta 2016;183:757-64. [DOI: 10.1007/s00604-015-1721-3] [Cited by in Crossref: 37] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
196 Tyszczuk-rotko K, Jędruchniewicz K. Ultrasensitive Sensor for Uranium Monitoring in Water Ecosystems. J Electrochem Soc 2019;166:B837-44. [DOI: 10.1149/2.1371910jes] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
197 Mohammadi SZ, Beitollahi H, Allahabadi H, Rohani T. Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. Journal of Electroanalytical Chemistry 2019;847:113223. [DOI: 10.1016/j.jelechem.2019.113223] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
198 Yuan Y, Li T, Ye Z, Feng Y, Chen Z, Wang Y, Sun Y, Wu H, Yang Z, Wang Y, Zhang Y, Huang L, Liang B. A One-Step Electropolymerized Biomimetic Polypyrrole Membrane-Based Electrochemical Sensor for Selective Detection of Valproate. Front Bioeng Biotechnol 2022;10:851692. [DOI: 10.3389/fbioe.2022.851692] [Reference Citation Analysis]
199 Biscay J, Findlay E, Dennany L. Electrochemical monitoring of alcohol in sweat. Talanta 2021;224:121815. [PMID: 33379040 DOI: 10.1016/j.talanta.2020.121815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
200 Bujes-garrido J, Arcos-martínez MJ. Disposable sensor for electrochemical determination of chloride ions. Talanta 2016;155:153-7. [DOI: 10.1016/j.talanta.2016.04.038] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
201 Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 2015;182:643-51. [DOI: 10.1007/s00604-014-1370-y] [Cited by in Crossref: 69] [Cited by in F6Publishing: 44] [Article Influence: 8.6] [Reference Citation Analysis]