BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hirota M, Ohmuraya M, Baba H. The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 2006;41:832-6. [PMID: 17048046 DOI: 10.1007/s00535-006-1874-2] [Cited by in Crossref: 143] [Cited by in F6Publishing: 146] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Adewale IO, Adebiyi VG, Famutimi OG, Dada OV. Kinetics of trypsin inhibition by methanolic and solvent-partitioned fractions of two medicinal plants – Momordica charantia and Xylopia aethiopica. South African Journal of Botany 2023;152:174-181. [DOI: 10.1016/j.sajb.2022.11.037] [Reference Citation Analysis]
2 Nie H, Ji W, Cui J, Liang X, Yang X, Bai J, Zhang X. An AIE luminogen self-assembled nanoprobe for efficient monitoring of the concentration and structural transition of human serum albumin. Analytica Chimica Acta 2022;1236:340578. [DOI: 10.1016/j.aca.2022.340578] [Reference Citation Analysis]
3 Kr Mandal N, Bandyopadhyay N, Arya P, Chowdhury S, Raghav N, Prakash Naskar J. Synthesis, characterization, structure, in vitro enzymatic activity and sensing aspects of a copper(II) complex stabilized from a naphthaldehyde based Schiff base ligand. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.121229] [Reference Citation Analysis]
4 Giel MC, Zhang S, Hu Q, Ding D, Tang Y, Hong Y. Synthesis of a β-Arylethenesulfonyl Fluoride-Functionalized AIEgen for Activity-Based Urinary Trypsin Detection. ACS Appl Bio Mater 2022. [PMID: 35993571 DOI: 10.1021/acsabm.2c00513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Lou H, Wang Y, Xie B, Bai X, Gao Y, Zhang R, Xu S. Structural evolution of trypsinogen gene redundancy confers risk for pancreas diseases.. [DOI: 10.1101/2022.08.08.22278454] [Reference Citation Analysis]
6 Huang W, Zhang J, Jin W, Yang J, Yu G, Shi H, Shi K. Piperine Alleviates Acute Pancreatitis: a possible role for FAM134B and CCPG1 Dependent ER-phagy. Phytomedicine 2022. [DOI: 10.1016/j.phymed.2022.154361] [Reference Citation Analysis]
7 Nagel F, Susemihl A, Geist N, Möhlis K, Palm GJ, Lammers M, Delcea M. Structural Basis of the Pancreatitis-Associated Autoproteolytic Failsafe Mechanism in Human Anionic Trypsin. JIR 2022;Volume 15:3633-42. [DOI: 10.2147/jir.s367699] [Reference Citation Analysis]
8 Aggarwal S, Ikram S. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: Stability & kinetic studies. Int J Biol Macromol 2022;207:205-21. [PMID: 35259431 DOI: 10.1016/j.ijbiomac.2022.03.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Qu F, Wang Z, Li C, Jiang D, Zhao X. Peptide cleavage-mediated aggregation-enhanced emission from metal nanoclusters for detecting trypsin and screen its inhibitors from foods. Sensors and Actuators B: Chemical 2022;359:131610. [DOI: 10.1016/j.snb.2022.131610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang J, Jiang G. AIE‐active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics. Handbook of Aggregation‐Induced Emission 2022. [DOI: 10.1002/9781119643098.ch54] [Reference Citation Analysis]
11 Rahmati Z, Roushani M, Hosseini H. Amorphous Ni(OH)2 nano-boxes as a high performance substrate for aptasensor application. Measurement 2022;189:110649. [DOI: 10.1016/j.measurement.2021.110649] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kröner PT, Wallace MB, Raimondo M, Antwi SO, Ma Y, Li Z, Ji B, Bi Y. Systemic anticoagulation is associated with decreased mortality and morbidity in acute pancreatitis. Pancreatology 2021;21:1428-33. [PMID: 34518096 DOI: 10.1016/j.pan.2021.09.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Liu K, Liu J, Zou B, Li C, Zeh HJ, Kang R, Kroemer G, Huang J, Tang D. Trypsin-Mediated Sensitization to Ferroptosis Increases the Severity of Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2022;13:483-500. [PMID: 34562639 DOI: 10.1016/j.jcmgh.2021.09.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Lu F, Shah PA, Rao A, Gifford-Hollingsworth C, Chen A, Trey G, Soryal M, Talat A, Aslam A, Nasir B, Choudhry S, Ishtiaq R, Sanoff H, Conteh LF, Noonan A, Hu KQ, Schmidt C, Fu M, Civan J, Xiao G, Lau DT, Lu X. Liver Cancer-Specific Serine Protease Inhibitor Kazal Is a Potentially Novel Biomarker for the Early Detection of Hepatocellular Carcinoma. Clin Transl Gastroenterol 2020;11:e00271. [PMID: 33512798 DOI: 10.14309/ctg.0000000000000271] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Kaur J, Malegaonkar JN, Bhosale SV, Singh PK. An anionic tetraphenyl ethylene based simple and rapid fluorescent probe for detection of trypsin and paraoxon methyl. Journal of Molecular Liquids 2021;333:115980. [DOI: 10.1016/j.molliq.2021.115980] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
16 Yao Z, Liu Y, Diao Y, Hu G, Qian Y, Li Z. Fluorometry detection for trypsin via inner filter effect between cytochrome C and in-situ formed fluorescent thiochrome. Talanta 2021;234:122614. [PMID: 34364423 DOI: 10.1016/j.talanta.2021.122614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
17 Cheng Y, Liu Y, Chen D, Zhou Y, Yu S, Lin H, Liao CK, Lin H, Xu P, Huang M. Dual effects of quercetin on protein digestion and absorption in the digestive tract. Food Chem 2021;358:129891. [PMID: 33940290 DOI: 10.1016/j.foodchem.2021.129891] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 deSouza IS, Lipsitt A. The soymilk diet: A previously unknown etiology of acute pancreatitis. Am J Emerg Med 2021;46:798.e5-6. [PMID: 33546956 DOI: 10.1016/j.ajem.2021.01.055] [Reference Citation Analysis]
19 Fu Y, Liu L, Li X, Chen H, Wang Z, Yang W, Zhang H, Zhang H. Peptide modified manganese-doped iron oxide nanoparticles as a sensitive fluorescence nanosensor for non-invasive detection of trypsin activity in vitro and in vivo. RSC Adv 2021;11:2213-20. [PMID: 35424166 DOI: 10.1039/d0ra08171j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Yam VW, Law AS. Recent advances in supramolecular self‐assembly and biological applications of luminescent alkynylplatinum( II ) polypyridine complexes. J Chin Chem Soc 2020;67:2246-52. [DOI: 10.1002/jccs.202000536] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Kaur J, Singh PK. Trypsin Detection Strategies: A Review. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1846490] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
22 Shin J, Park K, Park S, Yang H. Trypsin Detection Using Electrochemical Reduction‐based Redox Cycling. Bull Korean Chem Soc 2021;42:37-42. [DOI: 10.1002/bkcs.12147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Razavi M, Kompany-Zareh M, Khoshkam M. PARAFAC study of L-cys@CdTe QDs interaction to BSA, cytochrome c and trypsin: An approach through electrostatic and covalent bonds. Spectrochim Acta A Mol Biomol Spectrosc 2021;246:119016. [PMID: 33038854 DOI: 10.1016/j.saa.2020.119016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
24 Huang J, Suma A, Cui M, Grundmeier G, Carnevale V, Zhang Y, Kielar C, Keller A. Arranging Small Molecules with Subnanometer Precision on DNA Origami Substrates for the Single‐Molecule Investigation of Protein–Ligand Interactions. Small Structures 2020;1:2000038. [DOI: 10.1002/sstr.202000038] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
25 Cheng H, Zhao Y, Xu H, Hu Y, Zhang L, Song G, Yao Z. Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative. Dyes and Pigments 2020;180:108456. [DOI: 10.1016/j.dyepig.2020.108456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
26 Yam VW, Law AS. Luminescent d8 metal complexes of platinum(II) and gold(III): From photophysics to photofunctional materials and probes. Coordination Chemistry Reviews 2020;414:213298. [DOI: 10.1016/j.ccr.2020.213298] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
27 Hirota M, Ohmuraya M, Hashimoto D, Suyama K, Sugita H, Ogawa M. Roles of Autophagy and Pancreatic Secretory Trypsin Inhibitor in Trypsinogen Activation in Acute Pancreatitis. Pancreas 2020;49:493-7. [PMID: 32282761 DOI: 10.1097/MPA.0000000000001519] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Huang Q, Zhang J, Li W, Fu Y. A heparin-modified palladium nanozyme for photometric determination of protamine. Mikrochim Acta 2020;187:226. [PMID: 32170394 DOI: 10.1007/s00604-020-4208-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
29 Chen Y, Lin Z, Miao C, Cai Q, Li F, Zheng Z, Lin X, Zheng Y, Weng S. A simple fluorescence assay for trypsin through a protamine-induced carbon quantum dot-quenching aggregation platform. RSC Adv 2020;10:26765-70. [DOI: 10.1039/d0ra03970e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
30 Tomita S, Sugai H, Mimura M, Ishihara S, Shiraki K, Kurita R. Optical Fingerprints of Proteases and Their Inhibited Complexes Provided by Differential Cross-Reactivity of Fluorophore-Labeled Single-Stranded DNA. ACS Appl Mater Interfaces 2019;11:47428-36. [PMID: 31747245 DOI: 10.1021/acsami.9b17829] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
31 Jesús-De la Cruz KM, Ávila-Fernández Á, Peña-Marín ES, Jiménez-Martínez LD, Tovar-Ramírez D, Martínez-García R, Guerrero-Zárate R, Asencio-Alcudia GG, Alvarez-González CA. Trypsin gene expression in adults and larvae of tropical gar Atractosteus tropicus. Fish Physiol Biochem 2020;46:145-55. [PMID: 31707568 DOI: 10.1007/s10695-019-00704-8] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Zhang H, Wu ZY, Wang YZ, Zhou DD, Yang FQ, Li DQ. On-line immobilized trypsin microreactor for evaluating inhibitory activity of phenolic acids by capillary electrophoresis and molecular docking. Food Chem 2020;310:125823. [PMID: 31757489 DOI: 10.1016/j.foodchem.2019.125823] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
33 Phue WH, Liu M, Xu K, Srinivasan D, Ismail A, George S. A Comparative Analysis of Different Grades of Silica Particles and Temperature Variants of Food-Grade Silica Nanoparticles for Their Physicochemical Properties and Effect on Trypsin. J Agric Food Chem 2019;67:12264-72. [DOI: 10.1021/acs.jafc.9b03638] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
34 Buchholz I, Nagel F, Klein A, Wagh PR, Mahajan UM, Greinacher A, Lerch MM, Mayerle J, Delcea M. The impact of physiological stress conditions on protein structure and trypsin inhibition of serine protease inhibitor Kazal type 1 (SPINK1) and its N34S variant. Biochim Biophys Acta Proteins Proteom 2020;1868:140281. [PMID: 31525466 DOI: 10.1016/j.bbapap.2019.140281] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
35 Liu Y, Zhang F, He X, Ma P, Huang Y, Tao S, Sun Y, Wang X, Song D. A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sensors and Actuators B: Chemical 2019;294:263-9. [DOI: 10.1016/j.snb.2019.05.057] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
36 Chan CW, Cheng H, Hau FK, Chan AK, Yam VW. Protamine-Induced Supramolecular Self-Assembly of Red-Emissive Alkynylplatinum(II) 2,6-Bis(benzimidazol-2′-yl)pyridine Complex for Selective Label-Free Sensing of Heparin and Real-Time Monitoring of Trypsin Activity. ACS Appl Mater Interfaces 2019;11:31585-93. [DOI: 10.1021/acsami.9b08653] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
37 Kong W, Li Q, Xia L, Li X, Sun H, Kong R, Qu F. Photoelectrochemical determination of trypsin by using an indium tin oxide electrode modified with a composite prepared from MoS2 nanosheets and TiO2 nanorods. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3589-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
38 Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019;17:E320. [PMID: 31151260 DOI: 10.3390/md17060320] [Cited by in Crossref: 117] [Cited by in F6Publishing: 119] [Article Influence: 29.3] [Reference Citation Analysis]
39 Schilling O, Biniossek ML, Mayer B, Elsässer B, Brandstetter H, Goettig P, Stenman UH, Koistinen H. Specificity profiling of human trypsin-isoenzymes. Biol Chem 2018;399:997-1007. [PMID: 29883318 DOI: 10.1515/hsz-2018-0107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
40 Lin X, Zhu Z, Zhao C, Li S, Liu Q, Liu A, Lin L, Lin X. Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sensors and Actuators B: Chemical 2019;284:346-53. [DOI: 10.1016/j.snb.2018.12.109] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
41 Li H, Yang M, Kong D, Jin R, Zhao X, Liu F, Yan X, Lin Y, Lu G. Sensitive fluorescence sensor for point-of-care detection of trypsin using glutathione-stabilized gold nanoclusters. Sensors and Actuators B: Chemical 2019;282:366-72. [DOI: 10.1016/j.snb.2018.11.077] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
42 Dileep KV, Ashok S, Remya C, Dharmendra KY, Pérez-Sánchez H, Sadasivan C. Indole fragments for the design of lead molecules against pancreatitis. J Biomol Struct Dyn 2020;38:263-7. [PMID: 30633717 DOI: 10.1080/07391102.2019.1567389] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Srinivasa SB, Poojary B, Brahmavara U, Das AJ, Middha SK. Anti-Inflammatory, Radical Scavenging Mechanism of New 4-Aryl-[1,3]-thiazol-2-yl-2-quinoline Carbohydrazides and Quinolinyl[1,3]-thiazolo[3,2- b ][1,2,4]triazoles. ChemistrySelect 2018;3:12478-85. [DOI: 10.1002/slct.201801398] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
44 Xu S, Zhang F, Xu L, Liu X, Ma P, Sun Y, Wang X, Song D. A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sensors and Actuators B: Chemical 2018;273:1015-21. [DOI: 10.1016/j.snb.2018.07.023] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 9.4] [Reference Citation Analysis]
45 Kielar C, Reddavide FV, Tubbenhauer S, Cui M, Xu X, Grundmeier G, Zhang Y, Keller A. Pharmacophore Nanoarrays on DNA Origami Substrates as a Single-Molecule Assay for Fragment-Based Drug Discovery. Angew Chem 2018;130:15089-93. [DOI: 10.1002/ange.201806778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
46 Kielar C, Reddavide FV, Tubbenhauer S, Cui M, Xu X, Grundmeier G, Zhang Y, Keller A. Pharmacophore Nanoarrays on DNA Origami Substrates as a Single-Molecule Assay for Fragment-Based Drug Discovery. Angew Chem Int Ed 2018;57:14873-7. [DOI: 10.1002/anie.201806778] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
47 Wang M, Su D, Wang G, Su X. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles. Anal Bioanal Chem 2018;410:6891-900. [DOI: 10.1007/s00216-018-1292-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
48 Hu Y, He Y, Han Y, Ge Y, Song G, Zhou J. Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin. Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-2920-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
49 Sato D, Kondo T, Kato T. Dual emissive bispyrene peptide probes for highly sensitive measurements of trypsin activity and evaluation of trypsin inhibitors. Bioorganic & Medicinal Chemistry 2018;26:3468-73. [DOI: 10.1016/j.bmc.2018.05.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
50 Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W. Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 2018;189:92-9. [PMID: 30086981 DOI: 10.1016/j.talanta.2018.06.026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
51 Xu J, Prost E, Haupt K, Tse Sum Bui B. Direct and sensitive determination of trypsin in human urine using a water-soluble signaling fluorescent molecularly imprinted polymer nanoprobe. Sensors and Actuators B: Chemical 2018;258:10-7. [DOI: 10.1016/j.snb.2017.11.077] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
52 Shi F, Wang L, Li Y, Zhang Y, Su X. A simple “turn-on” detection platform for trypsin activity and inhibitor screening based on N-acetyl-l-cysteine capped CdTe Quantum Dots. Sensors and Actuators B: Chemical 2018;255:2733-41. [DOI: 10.1016/j.snb.2017.09.087] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
53 Massad-ivanir N, Bhunia SK, Raz N, Segal E, Jelinek R. Synthesis and characterization of a nanostructured porous silicon/carbon dot-hybrid for orthogonal molecular detection. NPG Asia Mater 2018;10:e463-e463. [DOI: 10.1038/am.2017.233] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
54 Sharmila GR, Halami PM, Venkateswaran G. Identification and characterization of a calcium dependent bacillopeptidase from Bacillus subtilis CFR5 with novel kunitz trypsin inhibitor degradation activity. Food Research International 2018;103:263-72. [DOI: 10.1016/j.foodres.2017.10.049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
55 Welcome MO. Chemical Digestion, Absorption, and Transport. Gastrointestinal Physiology 2018. [DOI: 10.1007/978-3-319-91056-7_12] [Reference Citation Analysis]
56 Su D, Wang M, Liu Q, Qu Z, Su X. A novel fluorescence strategy for mercury ion and trypsin activity assay based on nitrogen-doped graphene quantum dots. New J Chem 2018;42:17083-90. [DOI: 10.1039/c8nj02790k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
57 Law AS, Yeung MC, Yam VW. Arginine-Rich Peptide-Induced Supramolecular Self-Assembly of Water-Soluble Anionic Alkynylplatinum(II) Complexes: A Continuous and Label-Free Luminescence Assay for Trypsin and Inhibitor Screening. ACS Appl Mater Interfaces 2017;9:41143-50. [DOI: 10.1021/acsami.7b12319] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
58 Wang X, Mahoney M, Meyerhoff ME. Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Anal Chem 2017;89:12334-41. [DOI: 10.1021/acs.analchem.7b03352] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
59 Chu KE, Fong Y, Wang D, Chen CF, Yeh DY. Pretreatment of a matrix metalloproteases inhibitor and aprotinin attenuated the development of acute pancreatitis-induced lung injury in rat model. Immunobiology 2018;223:64-72. [PMID: 29030007 DOI: 10.1016/j.imbio.2017.10.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
60 Xu J, Haupt K, Tse Sum Bui B. Core-Shell Molecularly Imprinted Polymer Nanoparticles as Synthetic Antibodies in a Sandwich Fluoroimmunoassay for Trypsin Determination in Human Serum. ACS Appl Mater Interfaces 2017;9:24476-83. [PMID: 28678476 DOI: 10.1021/acsami.7b05844] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 8.2] [Reference Citation Analysis]
61 Qin D, Wang L, Wang Y, Du X, Zhang L, Zhang Q, He B. Shape-controlled synthesis of protein-conjugated CdS nanocrystals (NCs) and study on the binding of Cd2+/CdS to trypsin. J Nanopart Res 2017;19:252. [DOI: 10.1007/s11051-017-3950-3] [Reference Citation Analysis]
62 Cheng M, Chen Z. Trypsin inhibitor screening in traditional Chinese medicine by using an immobilized enzyme microreactor in capillary and molecular docking study. J Sep Sci 2017;40:3168-74. [DOI: 10.1002/jssc.201700419] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
63 Mukhi P, Mohapatra SS, Bhattacharjee M, Ray KK, Muraleedharan TS, Arun A, Sathyavathi R, Juluri RR, Satyam PV, Panda AK, Biswas A, Nayak S, Bojja S, Pratihar S, Roy S. Mercury based drug in ancient India: The red sulfide of mercury in nanoscale. J Ayurveda Integr Med 2017;8:93-8. [PMID: 28600164 DOI: 10.1016/j.jaim.2017.01.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
64 Xiang H, Zhang Q, Qi B, Tao X, Xia S, Song H, Qu J, Shang D. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Front Pharmacol 2017;8:216. [PMID: 28487653 DOI: 10.3389/fphar.2017.00216] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
65 Huang S, Li F, Liao C, Zheng B, Du J, Xiao D. A selective and sensitive fluorescent probe for the determination of HSA and trypsin. Talanta 2017;170:562-8. [PMID: 28501212 DOI: 10.1016/j.talanta.2017.01.034] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
66 Jetzschmann KJ, Zhang X, Yarman A, Wollenberger U, Scheller FW. Label-Free MIP Sensors for Protein Biomarkers. Springer Series on Chemical Sensors and Biosensors 2017. [DOI: 10.1007/5346_2017_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
67 Shi F, Liu S, Su X. l -Cysteine-capped CdTe quantum dots as a fluorescent probe for sequential detection of lysozyme and trypsin. New J Chem 2017;41:4138-44. [DOI: 10.1039/c6nj03903k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
68 Ertürk G, Hedström M, Mattiasson B. A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosensors and Bioelectronics 2016;86:557-65. [DOI: 10.1016/j.bios.2016.07.046] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 7.1] [Reference Citation Analysis]
69 Zhang L, Qin H, Cui W, Zhou Y, Du J. Label–free, turn–on fluorescent sensor for trypsin activity assay and inhibitor screening. Talanta 2016;161:535-40. [DOI: 10.1016/j.talanta.2016.09.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
70 Zhuo CX, Wang LH, Feng JJ, Zhang YD. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates. Sensors (Basel) 2016;16:E1477. [PMID: 27834849 DOI: 10.3390/s16111477] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
71 Piran R, Lee SH, Kuss P, Hao E, Newlin R, Millán JL, Levine F. PAR2 regulates regeneration, transdifferentiation, and death. Cell Death Dis 2016;7:e2452. [PMID: 27809303 DOI: 10.1038/cddis.2016.357] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
72 Sato D, Kato T. Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching. Bioorg Med Chem Lett 2016;26:5736-40. [PMID: 27810242 DOI: 10.1016/j.bmcl.2016.10.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
73 Kim HJ, Jang C. Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals. Journal of Molecular Liquids 2016;222:596-600. [DOI: 10.1016/j.molliq.2016.07.099] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
74 Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016;116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Cited by in Crossref: 538] [Cited by in F6Publishing: 555] [Article Influence: 76.9] [Reference Citation Analysis]
75 Plakke MS, Deutsch AB, Meslin C, Clark NL, Morehouse NI. Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly. J Exp Biol 2015;218:1548-55. [PMID: 25994634 DOI: 10.1242/jeb.118323] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
76 Lin K, Gao F, Chen Q, Liu Q, Chen S. Framework for interpretation of trypsin-antitrypsin imbalance and genetic heterogeneity in pancreatitis. Saudi J Gastroenterol 2015;21:198-207. [PMID: 26228362 DOI: 10.4103/1319-3767.161643] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
77 Wang L, Shi F, Li Y, Su X. An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted Cu nanoclusters. Sensors and Actuators B: Chemical 2016;222:945-51. [DOI: 10.1016/j.snb.2015.09.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
78 Tabish T, Zhang S. Graphene Quantum Dots: Syntheses, Properties, and Biological Applications. Comprehensive Nanoscience and Nanotechnology 2016. [DOI: 10.1016/b978-0-12-803581-8.04133-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
79 You X, Zhang G, Zhan C, Wang Y, Zhang D. New Chemo-/Biosensors Based on the Aggregation-Induced Emission Mechanism. ACS Symposium Series 2016. [DOI: 10.1021/bk-2016-1227.ch004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
80 Zhang L, Du J. A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate. Biosens Bioelectron 2016;79:347-52. [PMID: 26724537 DOI: 10.1016/j.bios.2015.12.070] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
81 Jang G, Seo S, Lee TS. Electrostatically self-assembled microcapsule composed of conjugated polyelectrolytes and polypeptides for an emission color-changeable assay for trypsin. Sensors and Actuators B: Chemical 2015;221:1229-35. [DOI: 10.1016/j.snb.2015.07.097] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
82 Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015;115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Cited by in Crossref: 5011] [Cited by in F6Publishing: 5139] [Article Influence: 626.4] [Reference Citation Analysis]
83 Ou LJ, Li XY, Li LJ, Liu HW, Sun AM, Liu KJ. A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes. Analyst 2015;140:1871-5. [PMID: 25657995 DOI: 10.1039/c4an01994f] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
84 Burkhardt T, Kaufmann CM, Letzel T, Grassmann J. Enzymatic Assays Coupled with Mass Spectrometry with or without Embedded Liquid Chromatography. ChemBioChem 2015;16:1985-92. [DOI: 10.1002/cbic.201500325] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
85 Chen G, Shi H, Ban F, Zhang Y, Sun L. Determination of trypsin activity using a gold electrode modified with a nanocover composed of graphene oxide and thionine. Microchim Acta 2015;182:2469-76. [DOI: 10.1007/s00604-015-1601-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
86 Tang B, Yang Y, Wang G, Yao Z, Zhang L, Wu HC. A simple fluorescent probe based on a pyrene derivative for rapid detection of protamine and monitoring of trypsin activity. Org Biomol Chem 2015;13:8708-12. [PMID: 26178260 DOI: 10.1039/c5ob01034a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
87 Lin Y, Chapman R, Stevens MM. Integrative Self-assembly of Graphene Quantum Dot and Biopolymer into a Versatile Biosensing Toolkit. Adv Funct Mater 2015;25:3183-92. [PMID: 28458628 DOI: 10.1002/adfm.201500624] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 6.8] [Reference Citation Analysis]
88 Ghosh S, Anand U, Mukherjee S. Kinetic Aspects of Enzyme-Mediated Evolution of Highly Luminescent Meta Silver Nanoclusters. J Phys Chem C 2015;119:10776-84. [DOI: 10.1021/acs.jpcc.5b03594] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
89 Zhang R, Sun T, Liu C, Song W, Cao Z, Liu R. New Insights into the Toxicity of n -Butanol to Trypsin: Spectroscopic and Molecular Docking Descriptions: INTERACTION OF n -BUTANOL WITH TRYPSIN. J Biochem Mol Toxicol 2015;29:418-25. [DOI: 10.1002/jbt.21711] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
90 Seneff S, Swanson N, Li C, Koenig G. Death as a Drug Side Effect in FAERS: Is Glyphosate Contamination a Factor? AS 2015;06:1472-1501. [DOI: 10.4236/as.2015.612143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
91 Fan H, Kou J, Han D, Li P, Zhang D, Wu Q, He Q. Sensitive proteolysis assay based on the detection of a highly characteristic solid-state process. RSC Adv 2015;5:48893-7. [DOI: 10.1039/c5ra05749c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
92 Lv Y, Zhang J, Wu H, Zhao S, Song Y, Wang S, Wang B, Lv G, Ma X. A protease inhibition strategy based on acceleration of autolysis. Chem Commun 2015;51:5959-62. [DOI: 10.1039/c5cc01448d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
93 Mashima A, Kurahashi M, Sasahara K, Yoshida T, Chuman H. Connecting Classical QSAR and LERE Analyses Using Modern Molecular Calculations, LERE-QSAR (VI): Hydrolysis of Substituted Hippuric Acid Phenyl Esters by Trypsin. Mol Inform 2014;33:802-14. [PMID: 27485426 DOI: 10.1002/minf.201400099] [Reference Citation Analysis]
94 Miao P, Wang B, Han K, Tang Y. Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochemistry Communications 2014;47:21-4. [DOI: 10.1016/j.elecom.2014.07.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
95 Perera E, Rodríguez-Viera L, Perdomo-Morales R, Montero-Alejo V, Moyano FJ, Martínez-Rodríguez G, Mancera JM. Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. J Comp Physiol B 2015;185:17-35. [PMID: 25192870 DOI: 10.1007/s00360-014-0851-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
96 Park S, Yang H. Sensitive and selective trypsin detection using redox cycling in the presence of l -ascorbic acid. Analyst 2014;139:4051. [DOI: 10.1039/c4an00465e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
97 Lin Y, Chapman R, Stevens MM. Label-free multimodal protease detection based on protein/perylene dye coassembly and enzyme-triggered disassembly. Anal Chem 2014;86:6410-7. [PMID: 24914622 DOI: 10.1021/ac500777r] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
98 Dong M, Qi H, Ding S, Li M. Electrochemical determination of trypsin using a heptapeptide substrate self-assembled on a gold electrode. Microchim Acta 2015;182:43-9. [DOI: 10.1007/s00604-014-1295-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
99 Zhang M, Jang CH. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer. Chemphyschem 2014;15:2569-74. [PMID: 24850496 DOI: 10.1002/cphc.201402120] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
100 Kim H, Ng CY, Algar WR. Quantum Dot-Based Multidonor Concentric FRET System and Its Application to Biosensing Using an Excitation Ratio. Langmuir 2014;30:5676-85. [DOI: 10.1021/la501102x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
101 Li X, Zhu S, Xu B, Ma K, Zhang J, Yang B, Tian W. Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 2013;5:7776-9. [PMID: 23851983 DOI: 10.1039/c3nr00006k] [Cited by in Crossref: 125] [Cited by in F6Publishing: 126] [Article Influence: 13.9] [Reference Citation Analysis]
102 Zhang W, Zhang P, Zhang S, Zhu C. Label-free and real-time monitoring of trypsin activity in living cells by quantum-dot-based fluorescent sensors. Anal Methods 2014;6:2499-505. [DOI: 10.1039/c3ay41793j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
103 Seo S, Kim J, Jang G, Kim D, Lee TS. Aggregation-deaggregation-triggered, tunable fluorescence of an assay ensemble composed of anionic conjugated polymer and polypeptides by enzymatic catalysis of trypsin. ACS Appl Mater Interfaces 2014;6:918-24. [PMID: 24359429 DOI: 10.1021/am405120y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
104 Xu N, Li Y, Li H, Wu Y. A Continuous Fluorometric Assay for Trypsin Based on Melittin and the Noncovalent-binding-induced Pyrene Excimer. Chem Lett 2013;42:1528-30. [DOI: 10.1246/cl.130713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
105 Foster JR. A review of animal models of nonneoplastic pancreatic diseases. Toxicol Pathol. 2014;42:243-259. [PMID: 24178571 DOI: 10.1177/0192623313508479] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
106 Petryayeva E, Algar WR. Proteolytic Assays on Quantum-Dot-Modified Paper Substrates Using Simple Optical Readout Platforms. Anal Chem 2013;85:8817-25. [DOI: 10.1021/ac4020066] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 6.3] [Reference Citation Analysis]
107 Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, AlTalabani AA, Knawy BA. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev Rep. 2013;9:16-31. [PMID: 22628114 DOI: 10.1007/s12015-012-9385-4] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 11.4] [Reference Citation Analysis]
108 Dwivedi AK, Iyer PK. A fluorescence turn on trypsin assay based on aqueous polyfluorene. J Mater Chem B 2013;1:4005-10. [PMID: 32261227 DOI: 10.1039/c3tb20712a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
109 Vandermarliere E, Mueller M, Martens L. Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrom Rev 2013;32:453-65. [PMID: 23775586 DOI: 10.1002/mas.21376] [Cited by in Crossref: 132] [Cited by in F6Publishing: 134] [Article Influence: 13.2] [Reference Citation Analysis]
110 Miao P, Liu T, Li X, Ning L, Yin J, Han K. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens Bioelectron 2013;49:20-4. [PMID: 23708813 DOI: 10.1016/j.bios.2013.04.038] [Cited by in Crossref: 97] [Cited by in F6Publishing: 98] [Article Influence: 9.7] [Reference Citation Analysis]
111 Ning W, Wang Y, Zhang F, Wang H, Wang F, Wang X, Tang H, Liang S, Shi X, Liu Z. Beneficial effects of trypsin inhibitors derived from a spider venom peptide in L-arginine-induced severe acute pancreatitis in mice. PLoS One 2013;8:e61049. [PMID: 23613780 DOI: 10.1371/journal.pone.0061049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
112 Yao Z, Ma W, Yang Y, Chen X, Zhang L, Lin C, Wu H. Colorimetric and fluorescent detection of protamines with an anionic polythiophene derivative. Org Biomol Chem 2013;11:6466. [DOI: 10.1039/c3ob41407h] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
113 van Hoef V, Breugelmans B, Spit J, Simonet G, Zels S, Vanden Broeck J. Phylogenetic distribution of protease inhibitors of the Kazal-family within the Arthropoda. Peptides 2013;41:59-65. [PMID: 23159789 DOI: 10.1016/j.peptides.2012.10.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
114 Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP. Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 2012;165:1413-23. [PMID: 21806599 DOI: 10.1111/j.1476-5381.2011.01610.x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 7.6] [Reference Citation Analysis]
115 Gao X, Tang G, Li Y, Su X. A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots. Analytica Chimica Acta 2012;743:131-6. [DOI: 10.1016/j.aca.2012.07.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 4.4] [Reference Citation Analysis]
116 Lee WK, Braun M, Langelüddecke C, Thévenod F. Cyclosporin a, but not FK506, induces osmotic lysis of pancreas zymogen granules, intra-acinar enzyme release, and lysosome instability by activating K+ channel. Pancreas 2012;41:596-604. [PMID: 22158076 DOI: 10.1097/MPA.0b013e318239c6e5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
117 Zechner D, Spitzner M, Bobrowski A, Knapp N, Kuhla A, Vollmar B. Diabetes aggravates acute pancreatitis and inhibits pancreas regeneration in mice. Diabetologia. 2012;55:1526-1534. [PMID: 22327285 DOI: 10.1007/s00125-012-2479-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
118 Zheng F, Wu J, Zhao G. Peptide–quantum dot bioconjugates for label-free trypsin detection based on the exciton energy transfer. Anal Methods 2012;4:3932. [DOI: 10.1039/c2ay25923k] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
119 van Hoef V, Breugelmans B, Spit J, Simonet G, Zels S, Billen J, Vanden Broeck J. Functional analysis of a pancreatic secretory trypsin inhibitor-like protein in insects: Silencing effects resemble the human pancreatic autodigestion phenotype. Insect Biochemistry and Molecular Biology 2011;41:688-95. [DOI: 10.1016/j.ibmb.2011.04.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
120 Stern JR, Matthews JB. Pancreatic Necrosectomy. Advances in Surgery 2011;45:155-76. [DOI: 10.1016/j.yasu.2011.03.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
121 Abdulla A, Awla D, Thorlacius H, Regnér S. Role of neutrophils in the activation of trypsinogen in severe acute pancreatitis. J Leukoc Biol. 2011;90:975-982. [PMID: 21810937 DOI: 10.1189/jlb.0411195] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 5.8] [Reference Citation Analysis]
122 Ceppa EP, Lyo V, Grady EF, Knecht W, Grahn S, Peterson A, Bunnett NW, Kirkwood KS, Cattaruzza F. Serine proteases mediate inflammatory pain in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2011;300:G1033-42. [PMID: 21436316 DOI: 10.1152/ajpgi.00305.2010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
123 Gu X, Yang G, Zhang G, Zhang D, Zhu D. A New Fluorescence Turn-on Assay for Trypsin and Inhibitor Screening Based on Graphene Oxide. ACS Appl Mater Interfaces 2011;3:1175-9. [DOI: 10.1021/am2000104] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 4.9] [Reference Citation Analysis]
124 Li P, Liu Y, Wang X, Tang B. A new FRET nanoprobe for trypsin using a bridged β-cyclodextrin dimer–dye complex and its biological imaging applications. Analyst 2011;136:4520. [DOI: 10.1039/c1an15271h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
125 Xue W, Zhang G, Zhang D. A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles. Analyst 2011;136:3136. [DOI: 10.1039/c1an15224f] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 4.7] [Reference Citation Analysis]
126 Harper SJ, Cheslyn-Curtis S. Acute pancreatitis. Ann Clin Biochem. 2011;48:23-37. [PMID: 20926469 DOI: 10.1258/acb.2010.010196] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 2.2] [Reference Citation Analysis]
127 Ceppa E, Cattaruzza F, Lyo V, Amadesi S, Pelayo JC, Poole DP, Vaksman N, Liedtke W, Cohen DM, Grady EF, Bunnett NW, Kirkwood KS. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 2010;299:G556-71. [PMID: 20539005 DOI: 10.1152/ajpgi.00433.2009] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 4.7] [Reference Citation Analysis]
128 Xue W, Zhang G, Zhang D, Zhu D. A new label-free continuous fluorometric assay for trypsin and inhibitor screening with tetraphenylethene compounds. Org Lett 2010;12:2274-7. [PMID: 20405874 DOI: 10.1021/ol100626x] [Cited by in Crossref: 106] [Cited by in F6Publishing: 106] [Article Influence: 8.2] [Reference Citation Analysis]
129 Colomb J, Louie K, Massia SP, Bennett KM. Self-degrading, MRI-detectable hydrogel sensors with picomolar target sensitivity. Magn Reson Med 2010;64:1792-9. [PMID: 20648680 DOI: 10.1002/mrm.22570] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
130 Wang GP, Xu CS. Pancreatic secretory trypsin inhibitor: More than a trypsin inhibitor. World J Gastrointest Pathophysiol 2010; 1(2): 85-90 [PMID: 21607145 DOI: 10.4291/wjgp.v1.i2.85] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
131 Romac JM, Ohmuraya M, Bittner C, Majeed MF, Vigna SR, Que J, Fee BE, Wartmann T, Yamamura K, Liddle RA. Transgenic expression of pancreatic secretory trypsin inhibitor-1 rescues SPINK3-deficient mice and restores a normal pancreatic phenotype. Am J Physiol Gastrointest Liver Physiol 2010;298:G518-24. [PMID: 20110462 DOI: 10.1152/ajpgi.00431.2009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
132 Adjémian J, Anne A, Cauet G, Demaille C. Cleavage-Sensing Redox Peptide Monolayers for the Rapid Measurement of the Proteolytic Activity of Trypsin and α-Thrombin Enzymes. Langmuir 2010;26:10347-56. [DOI: 10.1021/la100397g] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 4.0] [Reference Citation Analysis]
133 Hirota M. 2. Etiological and Pathological Background of Acute Pancreatitis. J Jpn Soc Intern Med 2010;99:9-14. [DOI: 10.2169/naika.99.9] [Reference Citation Analysis]
134 Sendler M, Mayerle J, Lerch MM. Molecular Basis of Diseases of the Exocrine Pancreas. Essential Concepts in Molecular Pathology 2010. [DOI: 10.1016/b978-0-12-374418-0.00021-9] [Reference Citation Analysis]
135 Colleary S, Ó'fágáin C. Stability and catalytic properties of chemically modified pig trypsin. Biocatalysis and Biotransformation 2009;27:309-17. [DOI: 10.3109/10242420903207592] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
136 Lohman R, Jones NC, O’brien TJ, Cocks TM. A regulatory role for protease-activated receptor-2 in motivational learning in rats. Neurobiology of Learning and Memory 2009;92:301-9. [DOI: 10.1016/j.nlm.2009.03.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
137 Chen N, Zou J, Wang S, Ye Y, Huang Y, Gadda G, Yang JJ. Designing protease sensors for real-time imaging of trypsin activation in pancreatic cancer cells. Biochemistry 2009;48:3519-26. [PMID: 19271729 DOI: 10.1021/bi802289v] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 1.7] [Reference Citation Analysis]
138 Smith M, Kocher HM, Hunt BJ. Aprotinin in severe acute pancreatitis. Int J Clin Pract. 2010;64:84-92. [PMID: 19178597 DOI: 10.1111/j.1742-1241.2008.01899.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
139 Shamamian P, Kingman P, Mallen-st. Clair J, Bar-sagi D. Pathophysiology of Acute Pancreatitis. Imaging of the Pancreas 2009. [DOI: 10.1007/978-3-540-68251-6_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
140 Lohman R, O'brien TJ, Cocks TM. Protease-activated receptor-2 regulates trypsin expression in the brain and protects against seizures and epileptogenesis. Neurobiology of Disease 2008;30:84-93. [DOI: 10.1016/j.nbd.2007.12.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 1.7] [Reference Citation Analysis]
141 Matthew S, Ross C, Paul VJ, Luesch H. Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron 2008;64:4081-9. [DOI: 10.1016/j.tet.2008.02.035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 4.3] [Reference Citation Analysis]
142 Elfar M, Gaber LW, Sabek O, Fischer CP, Gaber AO. The inflammatory cascade in acute pancreatitis: relevance to clinical disease. Surg Clin North Am. 2007;87:1325-1340, vii. [PMID: 18053834 DOI: 10.1016/j.suc.2007.09.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
143 Ohmuraya M, Hirota M, Hashimoto D, Baba H. Autophagy activates trypsinogen in acute pancreatitis. Journal of the Japan Pancreas Society 2008;23:20-24. [DOI: 10.2958/suizo.23.20] [Reference Citation Analysis]
144 Liu J, Li F. New developments in the relationship between protease activated recerptor-2 and alimentary system diseases. Shijie Huaren Xiaohua Zazhi 2007; 15(9): 986-990 [DOI: 10.11569/wcjd.v15.i9.986] [Cited by in F6Publishing: 1] [Reference Citation Analysis]