BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol 2016;205:603-13. [PMID: 27620485 DOI: 10.1007/s00430-016-0477-7] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Sanjivkumar M, Vaishnavi R, Neelakannan M, Kannan D, Silambarasan T, Immanuel G. Investigation on characterization and biomedical properties of silver nanoparticles synthesized by an actinobacterium Streptomyces olivaceus (MSU3). Biocatalysis and Agricultural Biotechnology 2019;17:151-9. [DOI: 10.1016/j.bcab.2018.11.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
2 Murugaiah H, Teh CL, Loh KC, Mohamad Yahya AR, Md Noh NA, Abu Bakar NHH, Kernain D, Hashim R, Bustami Y. Study of Antibacterial and Anticancer Properties of bioAgNPs Synthesized Using Streptomyces sp. PBD-311B and the Application of bioAgNP-CNC/Alg as an Antibacterial Hydrogel Film against P. aeruginosa USM-AR2 and MRSA. Molecules 2021;26:6414. [PMID: 34770823 DOI: 10.3390/molecules26216414] [Reference Citation Analysis]
3 Florkiewicz W, Pluta K, Malina D, Rudnicka K, Żywicka A, Guigou MD, Tyliszczak B, Sobczak-Kupiec A. Investigation on Green Synthesis, Biocompatibility, and Antibacterial Activity of Silver Nanoparticles Prepared Using Cistus incanus. Materials (Basel) 2021;14:5028. [PMID: 34501114 DOI: 10.3390/ma14175028] [Reference Citation Analysis]
4 Mohanta YK, Mishra AK, Nayak D, Patra B, Bratovcic A, Avula SK, Mohanta TK, Murugan K, Saravanan M, Selakovic D. Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver Nanoparticles against MDA-MB-231 Breast Carcinoma. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/3863138] [Reference Citation Analysis]
5 Gutiérrez MF, Malaquias P, Hass V, Matos TP, Lourenço L, Reis A, Loguercio AD, Farago PV. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent 2017;61:12-20. [PMID: 28438559 DOI: 10.1016/j.jdent.2017.04.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
6 Oner E, Kotmakci M, Kantarci AG. A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol 2020;25:936-48. [PMID: 32315242 DOI: 10.1080/10837450.2020.1759630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wypij M, Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M, Golińska P. Green Synthesized Silver Nanoparticles: Antibacterial and Anticancer Activities, Biocompatibility, and Analyses of Surface-Attached Proteins. Front Microbiol 2021;12:632505. [PMID: 33967977 DOI: 10.3389/fmicb.2021.632505] [Reference Citation Analysis]
8 Castro-Mayorga JL, Fabra MJ, Cabedo L, Lagaron JM. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials (Basel) 2016;7:E4. [PMID: 28336838 DOI: 10.3390/nano7010004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
9 Florkiewicz W, Malina D, Pluta K, Rudnicka K, Gajewski A, Olejnik E, Tyliszczak B, Sobczak-Kupiec A. Assessment of cytotoxicity and immune compatibility of phytochemicals-mediated biosynthesised silver nanoparticles using Cynara scolymus. IET Nanobiotechnol 2019;13:726-35. [PMID: 31573542 DOI: 10.1049/iet-nbt.2018.5357] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
10 Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 2017;10:115-21. [PMID: 28721025 DOI: 10.2147/NSA.S133415] [Cited by in Crossref: 114] [Cited by in F6Publishing: 32] [Article Influence: 22.8] [Reference Citation Analysis]
11 Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. Materials (Basel) 2018;11:E321. [PMID: 29473883 DOI: 10.3390/ma11020321] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
12 Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 2018;34:23. [PMID: 29305718 DOI: 10.1007/s11274-017-2406-3] [Cited by in Crossref: 72] [Cited by in F6Publishing: 55] [Article Influence: 18.0] [Reference Citation Analysis]
13 Ahmar Rauf M, Oves M, Ur Rehman F, Rauf Khan A, Husain N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomedicine & Pharmacotherapy 2019;116:108983. [DOI: 10.1016/j.biopha.2019.108983] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
14 Betts JW, Hornsey M, La Ragione RM. Novel Antibacterials: Alternatives to Traditional Antibiotics. Adv Microb Physiol 2018;73:123-69. [PMID: 30262108 DOI: 10.1016/bs.ampbs.2018.06.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
15 Wang Y, Cai R, Tao G, Wang P, Zuo H, Zhao P, Umar A, He H. A Novel AgNPs/Sericin/Agar Film with Enhanced Mechanical Property and Antibacterial Capability. Molecules 2018;23:E1821. [PMID: 30041405 DOI: 10.3390/molecules23071821] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
16 Narchin F, Larijani K, Rustaiyan A, Nejad Ebrahimi S, Tafvizi F. Phytochemical Synthesis of Silver Nanoparticles by Two Techniques Using Saturaja rechengri Jamzad Extract: Identifying and Comparing in Vitro Anti-Proliferative Activities. Adv Pharm Bull 2018;8:235-44. [PMID: 30023325 DOI: 10.15171/apb.2018.028] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
17 Oves M, Rauf MA, Hussain A, Qari HA, Khan AAP, Muhammad P, Rehman MT, Alajmi MF, Ismail IIM. Antibacterial Silver Nanomaterial Synthesis From Mesoflavibacter zeaxanthinifaciens and Targeting Biofilm Formation. Front Pharmacol 2019;10:801. [PMID: 31427961 DOI: 10.3389/fphar.2019.00801] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
18 Sudhakar S, Mani E. Rapid Dissolution of Amyloid β Fibrils by Silver Nanoplates. Langmuir 2019;35:6962-70. [DOI: 10.1021/acs.langmuir.9b00080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kumar AG, Sankarganesh P, Parthasarathy V, Bhuvaneshwari J, Anbarasan R. In-vitro and in-vivo biological potential of the prepared Feroniella lucida mediated silver nanoparticles. J Sol-Gel Sci Technol. [DOI: 10.1007/s10971-022-05728-w] [Reference Citation Analysis]
20 Cai R, Tao G, He H, Song K, Zuo H, Jiang W, Wang Y. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications. Molecules 2017;22:E721. [PMID: 28468293 DOI: 10.3390/molecules22050721] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
21 Barabadi H, Alizadeh A, Ovais M, Ahmadi A, Shinwari ZK, Saravanan M. Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta‐analysis. IET nanobiotechnol 2018;12:377-91. [DOI: 10.1049/iet-nbt.2017.0120] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
22 Arul Selvaraj RC, Rajendran M, Nagaiah HP. Re-Potentiation of β-Lactam Antibiotic by Synergistic Combination with Biogenic Copper Oxide Nanocubes against Biofilm Forming Multidrug-Resistant Bacteria. Molecules 2019;24:E3055. [PMID: 31443467 DOI: 10.3390/molecules24173055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
23 Tan M, Choi Y, Kim J, Kim JH, Fromm KM. Polyaspartamide Functionalized Catechol-Based Hydrogels Embedded with Silver Nanoparticles for Antimicrobial Properties. Polymers (Basel) 2018;10:E1188. [PMID: 30961113 DOI: 10.3390/polym10111188] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
24 Ovais M, Hoque MZ, Khalil AT, Ayaz M, Ahmad I. Mechanisms underlying the anticancer applications of biosynthesized nanoparticles. Biogenic Nanoparticles for Cancer Theranostics. Elsevier; 2021. pp. 229-48. [DOI: 10.1016/b978-0-12-821467-1.00006-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Tan M, Horvàth L, Brunetto PS, Fromm KM. Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties. Polymers (Basel) 2018;10:E665. [PMID: 30966699 DOI: 10.3390/polym10060665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, Fraceto LF, Lima R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci Rep 2019;9:14351. [PMID: 31586116 DOI: 10.1038/s41598-019-50871-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 7.7] [Reference Citation Analysis]
27 Alzahabi KH, Usmani O, Georgiou TK, Ryan MP, Robertson BD, Tetley TD, Porter AE. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci 2020;4:581-600. [PMID: 33315067 DOI: 10.1042/ETLS20190154] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Bernasconi R, Carrara E, Hoop M, Mushtaq F, Chen X, Nelson BJ, Pané S, Credi C, Levi M, Magagnin L. Magnetically navigable 3D printed multifunctional microdevices for environmental applications. Additive Manufacturing 2019;28:127-35. [DOI: 10.1016/j.addma.2019.04.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
29 Bapat MS, Singh H, Shukla SK, Singh PP, Vo DN, Yadav A, Goyal A, Sharma A, Kumar D. Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. Chemosphere 2021;286:131761. [PMID: 34375828 DOI: 10.1016/j.chemosphere.2021.131761] [Reference Citation Analysis]
30 Zhang Z, Li S, Gu X, Li J, Lin X. Biosynthesis, characterization and antibacterial activity of silver nanoparticles by the Arctic anti-oxidative bacterium Paracoccus sp. Arc7-R13. Artif Cells Nanomed Biotechnol 2019;47:1488-95. [PMID: 30990104 DOI: 10.1080/21691401.2019.1601631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
31 El-Sherbiny GM, Lila MK, Shetaia YM, F Elswify MM, Mohamed SS. Antimicrobial activity of biosynthesised silver nanoparticles against multidrug-resistant microbes isolated from cancer patients with bacteraemia and candidaemia. Indian J Med Microbiol 2020;38:371-8. [PMID: 33154249 DOI: 10.4103/ijmm.IJMM_20_299] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, Dremina NN, Emel'yanov AI, Kuznetsova NP, Shurygin MG. NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity. Nanomaterials (Basel) 2020;10:E1477. [PMID: 32731519 DOI: 10.3390/nano10081477] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zawadzka K, Felczak A, Nowak M, Kowalczyk A, Piwoński I, Lisowska K. Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. J Hazard Mater 2021;418:126316. [PMID: 34118550 DOI: 10.1016/j.jhazmat.2021.126316] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Bunyatova U, Hammouda MB, Zhang J. Novel light-driven functional AgNPs induce cancer death at extra low concentrations. Sci Rep 2021;11:13258. [PMID: 34168242 DOI: 10.1038/s41598-021-92689-9] [Reference Citation Analysis]
35 Sankarganesh P, Ganesh Kumar A, Parthasarathy V, Joseph B, Priyadharsini G, Anbarasan R. Synthesis of Murraya koenigii Mediated Silver Nanoparticles and Their In Vitro and In Vivo Biological Potential. J Inorg Organomet Polym 2021;31:2971-9. [DOI: 10.1007/s10904-021-01894-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials (Basel) 2018;11:E2081. [PMID: 30355975 DOI: 10.3390/ma11112081] [Cited by in Crossref: 88] [Cited by in F6Publishing: 51] [Article Influence: 22.0] [Reference Citation Analysis]
37 Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, de Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J Nanobiotechnology 2021;19:53. [PMID: 33627148 DOI: 10.1186/s12951-021-00797-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Ottoni CA, Maria DA, Gonçalves PJRO, de Araújo WL, de Souza AO. Biogenic Aspergillus tubingensis silver nanoparticles' in vitro effects on human umbilical vein endothelial cells, normal human fibroblasts, HEPG2, and Galleria mellonella. Toxicol Res (Camb) 2019;8:789-801. [PMID: 32206300 DOI: 10.1039/c9tx00091g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Liu X, Chen JL, Yang WY, Qian YC, Pan JY, Zhu CN, Liu L, Ou WB, Zhao HX, Zhang DP. Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Sci Rep 2021;11:15795. [PMID: 34349183 DOI: 10.1038/s41598-021-95262-6] [Reference Citation Analysis]
40 Dehghanizade S, Arasteh J, Mirzaie A. Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 2018;46:160-8. [PMID: 28368661 DOI: 10.1080/21691401.2017.1304402] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 9.6] [Reference Citation Analysis]
41 Kurzmann C, Verheyen J, Coto M, Kumar RV, Divitini G, Shokoohi-Tabrizi HA, Verheyen P, De Moor RJG, Moritz A, Agis H. In vitro evaluation of experimental light activated gels for tooth bleaching. Photochem Photobiol Sci 2019;18:1009-19. [PMID: 30724960 DOI: 10.1039/c8pp00223a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
42 Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 2018;13:2217-63. [PMID: 29695904 DOI: 10.2147/IJN.S154748] [Cited by in Crossref: 111] [Cited by in F6Publishing: 31] [Article Influence: 27.8] [Reference Citation Analysis]
43 Anadozie SO, Adewale OB, Meyer M, Davids H, Roux S. In vitroanti-oxidant and cytotoxic activities of gold nanoparticles synthesized from an aqueous extract of theXylopia aethiopicafruit. Nanotechnology 2021;32. [PMID: 33845465 DOI: 10.1088/1361-6528/abf6ee] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Gupta K, Chhibber S. Biofunctionalization of Silver Nanoparticles With Lactonase Leads to Altered Antimicrobial and Cytotoxic Properties. Front Mol Biosci 2019;6:63. [PMID: 31448285 DOI: 10.3389/fmolb.2019.00063] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
45 Khalil MA, El-shanshoury AER, Alghamdi MA, Alsalmi FA, Mohamed SF, Sun J, Ali SS. Biosynthesis of Silver Nanoparticles by Marine Actinobacterium Nocardiopsis dassonvillei and Exploring Their Therapeutic Potentials. Front Microbiol 2022;12:705673. [DOI: 10.3389/fmicb.2021.705673] [Reference Citation Analysis]
46 Wypij M, Czarnecka J, Dahm H, Rai M, Golinska P. Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. J Basic Microbiol 2017;57:793-800. [PMID: 28670763 DOI: 10.1002/jobm.201700121] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
47 Cai R, Tao G, He H, Guo P, Yang M, Ding C, Zuo H, Wang L, Zhao P, Wang Y. In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application. Materials (Basel) 2017;10:E967. [PMID: 28820482 DOI: 10.3390/ma10080967] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
48 Durdu S, Aktug SL, Aktas S, Yalcin E, Usta M. Fabrication and in vitro properties of zinc-based superhydrophilic bioceramic coatings on zirconium. Surface and Coatings Technology 2018;344:467-78. [DOI: 10.1016/j.surfcoat.2018.03.062] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Kuntyi ОІ, Kytsya АR, Mertsalo IP, Mazur АS, Zozula GІ, Bazylyak LI, Тоpchak RV. Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polym Sci 2019;297:689-95. [DOI: 10.1007/s00396-019-04488-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 2] [Article Influence: 7.3] [Reference Citation Analysis]
50 Mihalik NE, Wen S, Driesschaert B, Eubank TD. Formulation and In Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech 2021;22:191. [PMID: 34169366 DOI: 10.1208/s12249-021-02049-z] [Reference Citation Analysis]
51 Wypij M, Jędrzejewski T, Ostrowski M, Trzcińska J, Rai M, Golińska P. Biogenic Silver Nanoparticles: Assessment of Their Cytotoxicity, Genotoxicity and Study of Capping Proteins. Molecules 2020;25:E3022. [PMID: 32630696 DOI: 10.3390/molecules25133022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
52 Chuy GP, Muraro PCL, Viana AR, Pavoski G, Espinosa DCR, Vizzotto BS, da Silva WL. Green Nanoarchitectonics of Silver Nanoparticles for Antimicrobial Activity Against Resistant Pathogens. J Inorg Organomet Polym Mater 2021;:1-10. [PMID: 34840542 DOI: 10.1007/s10904-021-02162-3] [Reference Citation Analysis]