BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch. 2014;466:549-562. [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Aghdassi AA, Weiss FU, Mayerle J, Lerch MM, Simon P. Genetic susceptibility factors for alcohol-induced chronic pancreatitis. Pancreatology 2015;15:S23-31. [DOI: 10.1016/j.pan.2015.05.476] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
2 Mosztbacher D, Farkas N, Solymár M, Pár G, Bajor J, Szűcs Á, Czimmer J, Márta K, Mikó A, Rumbus Z, Varjú P, Hegyi P, Párniczky A. Restoration of energy level in the early phase of acute pediatric pancreatitis. World J Gastroenterol 2017;23:957-63. [PMID: 28246469 DOI: 10.3748/wjg.v23.i6.957] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
3 Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2017;74:93-115. [PMID: 27714410 DOI: 10.1007/s00018-016-2391-y] [Cited by in Crossref: 127] [Cited by in F6Publishing: 111] [Article Influence: 25.4] [Reference Citation Analysis]
4 Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci. 2016;371:pii: 20150425. [PMID: 27377719 DOI: 10.1098/rstb.2015.0425] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
5 Kiss L, Fűr G, Mátrai P, Hegyi P, Ivány E, Cazacu IM, Szabó I, Habon T, Alizadeh H, Gyöngyi Z, Vigh É, Erőss B, Erős A, Ottoffy M, Czakó L, Rakonczay Z Jr. The effect of serum triglyceride concentration on the outcome of acute pancreatitis: systematic review and meta-analysis. Sci Rep 2018;8:14096. [PMID: 30237456 DOI: 10.1038/s41598-018-32337-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
6 Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z Jr, Hegyi P. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl- Channel. Front Physiol 2018;9:854. [PMID: 30050452 DOI: 10.3389/fphys.2018.00854] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
7 Kolodecik T, Shugrue C, Ashat M, Thrower EC. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol 2013;4:415. [PMID: 24474939 DOI: 10.3389/fphys.2013.00415] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
8 Hayashi M, Inagaki A, Novak I, Matsuda H. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells. Pflugers Arch 2016;468:1171-81. [PMID: 26965147 DOI: 10.1007/s00424-016-1806-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
9 Venglovecz V, Rakonczay Z Jr, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2015;467:625-40. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
10 Schnúr A, Hegyi P, Rousseau S, Lukacs GL, Veit G. Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016;2016:7596531. [PMID: 27382190 DOI: 10.1155/2016/7596531] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
11 Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas 2015;44:1211-33. [DOI: 10.1097/mpa.0000000000000421] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
12 Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018;9:1585. [PMID: 30618777 DOI: 10.3389/fphys.2018.01585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
13 Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scand J Immunol 2021;93:e13021. [PMID: 33455004 DOI: 10.1111/sji.13021] [Reference Citation Analysis]
14 Gál E, Dolenšek J, Stožer A, Pohorec V, Ébert A, Venglovecz V. A Novel in situ Approach to Studying Pancreatic Ducts in Mice. Front Physiol 2019;10:938. [PMID: 31396104 DOI: 10.3389/fphys.2019.00938] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
15 Criddle DN. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium. 2016;60:180-189. [PMID: 27229361 DOI: 10.1016/j.ceca.2016.04.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
16 Márta K, Farkas N, Szabó I, Illés A, Vincze Á, Pár G, Sarlós P, Bajor J, Szűcs Á, Czimmer J, Mosztbacher D, Párniczky A, Szemes K, Pécsi D, Hegyi P. Meta-Analysis of Early Nutrition: The Benefits of Enteral Feeding Compared to a Nil Per Os Diet Not Only in Severe, but Also in Mild and Moderate Acute Pancreatitis. Int J Mol Sci 2016;17:E1691. [PMID: 27775609 DOI: 10.3390/ijms17101691] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
17 Hegyi P, Rakonczay Z. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. Pancreatology. 2015;15:S13-S17. [PMID: 25921231 DOI: 10.1016/j.pan.2015.03.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
18 Kondo S, Fujiki K, Ko SB, Yamamoto A, Nakakuki M, Ito Y, Shcheynikov N, Kitagawa M, Naruse S, Ishiguro H. Functional characteristics of L1156F-CFTR associated with alcoholic chronic pancreatitis in Japanese. Am J Physiol Gastrointest Liver Physiol 2015;309:G260-9. [PMID: 26089335 DOI: 10.1152/ajpgi.00015.2014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
19 Tóth E, Maléth J, Závogyán N, Fanczal J, Grassalkovich A, Erdős R, Pallagi P, Horváth G, Tretter L, Bálint ER, Rakonczay Z Jr, Venglovecz V, Hegyi P. Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute pancreatitis. J Physiol 2019;597:5879-98. [PMID: 31631343 DOI: 10.1113/JP278517] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
20 Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020;11:855. [PMID: 32765303 DOI: 10.3389/fphys.2020.00855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Maléth J, Hegyi P, Rakonczay Z, Venglovecz V. Breakdown of bioenergetics evoked by mitochondrial damage in acute pancreatitis: Mechanisms and consequences. Pancreatology. 2015;15:S18-S22. [PMID: 26162756 DOI: 10.1016/j.pan.2015.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
22 Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37-66. [PMID: 26856995 DOI: 10.1007/112_2015_5002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
23 Márta K, Szabó AN, Pécsi D, Varjú P, Bajor J, Gódi S, Sarlós P, Mikó A, Szemes K, Papp M, Tornai T, Vincze Á, Márton Z, Vincze PA, Lankó E, Szentesi A, Molnár T, Hágendorn R, Faluhelyi N, Battyáni I, Kelemen D, Papp R, Miseta A, Verzár Z, Lerch MM, Neoptolemos JP, Sahin-Tóth M, Petersen OH, Hegyi P; Hungarian Pancreatic Study Group. High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double-blind clinical trial. BMJ Open 2017;7:e015874. [PMID: 28912191 DOI: 10.1136/bmjopen-2017-015874] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
24 Balázs A, Hegyi P. Cystic fibrosis-style changes in the early phase of pancreatitis. Clin Res Hepatol Gastroenterol 2015;39 Suppl 1:S12-7. [PMID: 26206571 DOI: 10.1016/j.clinre.2015.05.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
25 Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020;21:E4005. [PMID: 32503336 DOI: 10.3390/ijms21114005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
26 Zádori N, Gede N, Antal J, Szentesi A, Alizadeh H, Vincze Á, Izbéki F, Papp M, Czakó L, Varga M, de-Madaria E, Petersen OH, Singh VP, Mayerle J, Faluhelyi N, Miseta A, Reiber I, Hegyi P. EarLy Elimination of Fatty Acids iN hypertriglyceridemia-induced acuTe pancreatitis (ELEFANT trial): Protocol of an open-label, multicenter, adaptive randomized clinical trial. Pancreatology 2020;20:369-76. [DOI: 10.1016/j.pan.2019.12.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
27 Yang A, Sun Y, Mao C, Yang S, Huang M, Deng M, Ding N, Yang X, Zhang M, Jin S, Jiang Y, Huang Y. Folate Protects Hepatocytes of Hyperhomocysteinemia Mice From Apoptosis via Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-Activated Endoplasmic Reticulum Stress: F OLATE P ROTECTS H EPATOCYTES A POPTOSISIN M ICE. J Cell Biochem 2017;118:2921-32. [DOI: 10.1002/jcb.25946] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
28 Criddle DN. The role of fat and alcohol in acute pancreatitis: A dangerous liaison. Pancreatology. 2015;15:S6-S12. [PMID: 25845855 DOI: 10.1016/j.pan.2015.02.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
29 Javed MA, Wen L, Awais M, Latawiec D, Huang W, Chvanov M, Schaller S, Bordet T, Michaud M, Pruss R, Tepikin A, Criddle D, Sutton R. TRO40303 Ameliorates Alcohol-Induced Pancreatitis Through Reduction of Fatty Acid Ethyl Ester-Induced Mitochondrial Injury and Necrotic Cell Death. Pancreas 2018;47:18-24. [PMID: 29200128 DOI: 10.1097/MPA.0000000000000953] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Stuart CE, Singh RG, Alarcon Ramos GC, Priya S, Ko J, Desouza SV, Cho J, Petrov MS. Relationship of pancreas volume to tobacco smoking and alcohol consumption following pancreatitis. Pancreatology 2020;20:60-7. [DOI: 10.1016/j.pan.2019.10.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]