BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias P, Soler M, Nachmani D, Pelletier J, Schumann U, Calleja-Cervantes ME, Moran S, Guil S, Bueno-Costa A, Piñeyro D, Perez-Salvia M, Rosselló-Tortella M, Piqué L, Bech-Serra JJ, De La Torre C, Vidal A, Martínez-Iniesta M, Martín-Tejera JF, Villanueva A, Arias A, Cuartas I, Aransay AM, La Madrid AM, Carcaboso AM, Santa-Maria V, Mora J, Fernandez AF, Fraga MF, Aldecoa I, Pedrosa L, Graus F, Vidal N, Martínez-Soler F, Tortosa A, Carrato C, Balañá C, Boudreau MW, Hergenrother PJ, Kötter P, Entian KD, Hench J, Frank S, Mansouri S, Zadeh G, Dans PD, Orozco M, Thomas G, Blanco S, Seoane J, Preiss T, Pandolfi PP, Esteller M. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol 2019;138:1053-74. [PMID: 31428936 DOI: 10.1007/s00401-019-02062-4] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 17.7] [Reference Citation Analysis]
Number Citing Articles
1 Nombela P, Miguel-López B, Blanco S. The role of m6A, m5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021;20:18. [PMID: 33461542 DOI: 10.1186/s12943-020-01263-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
2 Baudin-Baillieu A, Namy O. Saccharomyces cerevisiae, a Powerful Model for Studying rRNA Modifications and Their Effects on Translation Fidelity. Int J Mol Sci 2021;22:7419. [PMID: 34299038 DOI: 10.3390/ijms22147419] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Schaefer MR. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes (Basel) 2021;12:345. [PMID: 33652758 DOI: 10.3390/genes12030345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Ezra Manicum A, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022;71:103288. [DOI: 10.1016/j.jddst.2022.103288] [Reference Citation Analysis]
5 Wang K, Zhong W, Long Z, Guo Y, Zhong C, Yang T, Wang S, Lai H, Lu J, Zheng P, Mao X. 5-Methylcytosine RNA Methyltransferases-Related Long Non-coding RNA to Develop and Validate Biochemical Recurrence Signature in Prostate Cancer. Front Mol Biosci 2021;8:775304. [PMID: 34926580 DOI: 10.3389/fmolb.2021.775304] [Reference Citation Analysis]
6 Wang P, Wu M, Tu Z, Tao C, Hu Q, Li K, Zhu X, Huang K. Identification of RNA: 5-Methylcytosine Methyltransferases-Related Signature for Predicting Prognosis in Glioma. Front Oncol 2020;10:1119. [PMID: 32974125 DOI: 10.3389/fonc.2020.01119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox. Cell 2022;185:764-76. [PMID: 35245480 DOI: 10.1016/j.cell.2022.02.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
8 He Y, Yu X, Zhang M, Guo W. Pan-cancer analysis of m5C regulator genes reveals consistent epigenetic landscape changes in multiple cancers. World J Surg Oncol 2021;19:224. [PMID: 34325709 DOI: 10.1186/s12957-021-02342-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang J, Wang N, Wu J, Gao X, Zhao H, Liu Z, Yan X, Dong J, Wang F, Ba Y, Ma S, Jin J, Du J, Ji H, Hu S. 5-Methylcytosine Related LncRNAs Reveal Immune Characteristics, Predict Prognosis and Oncology Treatment Outcome in Lower-Grade Gliomas. Front Immunol 2022;13:844778. [DOI: 10.3389/fimmu.2022.844778] [Reference Citation Analysis]
10 Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, Lu J, Li L. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022;7:142. [PMID: 35484099 DOI: 10.1038/s41392-022-01003-0] [Reference Citation Analysis]
11 Galardi S, Michienzi A, Ciafrè SA. Insights into the Regulatory Role of m6A Epitranscriptome in Glioblastoma. Int J Mol Sci 2020;21:E2816. [PMID: 32316617 DOI: 10.3390/ijms21082816] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
12 Kumari K, Groza P, Aguilo F. Regulatory roles of RNA modifications in breast cancer. NAR Cancer 2021;3:zcab036. [PMID: 34541538 DOI: 10.1093/narcan/zcab036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wilkinson E, Cui YH, He YY. Context-Dependent Roles of RNA Modifications in Stress Responses and Diseases. Int J Mol Sci 2021;22:1949. [PMID: 33669361 DOI: 10.3390/ijms22041949] [Reference Citation Analysis]
14 Chen H, Ge XL, Zhang ZY, Liu M, Wu RY, Zhang XF, Xu LP, Cheng HY, Sun XC, Zhu HC. M5C regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in lung adenocarcinoma. Transl Lung Cancer Res 2021;10:2172-92. [PMID: 34164268 DOI: 10.21037/tlcr-21-351] [Reference Citation Analysis]
15 Gay DM, Lund AH, Jansson MD. Translational control through ribosome heterogeneity and functional specialization. Trends Biochem Sci 2021:S0968-0004(21)00144-4. [PMID: 34312084 DOI: 10.1016/j.tibs.2021.07.001] [Reference Citation Analysis]
16 Han Z, Yang B, Wang Y, Zeng X, Tian Z. Identification of Expression Patterns and Potential Prognostic Significance of m5C-Related Regulators in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021;11:592107. [PMID: 33912441 DOI: 10.3389/fonc.2021.592107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ao C, Yu L, Zou Q. Prediction of bio-sequence modifications and the associations with diseases. Brief Funct Genomics 2021;20:1-18. [PMID: 33313647 DOI: 10.1093/bfgp/elaa023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biol 2020;21:97. [PMID: 32375858 DOI: 10.1186/s13059-020-02009-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
19 Lv X, Liu X, Zhao M, Wu H, Zhang W, Lu Q, Chen X. RNA Methylation in Systemic Lupus Erythematosus. Front Cell Dev Biol 2021;9:696559. [PMID: 34307373 DOI: 10.3389/fcell.2021.696559] [Reference Citation Analysis]
20 Ortiz-Barahona V, Joshi RS, Esteller M. Use of DNA methylation profiling in translational oncology. Semin Cancer Biol 2020:S1044-579X(20)30271-6. [PMID: 33352265 DOI: 10.1016/j.semcancer.2020.12.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020;9:E2361. [PMID: 33120992 DOI: 10.3390/cells9112361] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022;20:214. [PMID: 35562754 DOI: 10.1186/s12967-022-03427-2] [Reference Citation Analysis]
23 Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2021;79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
24 Sun B, Zeng H, Liang J, Zhang L, Hu H, Wang Q, Meng W, Li C, Ye F, Wang C, Zhu J. NSUN5 Facilitates Viral RNA Recognition by RIG-I Receptor. J Immunol 2020;205:3408-18. [PMID: 33177158 DOI: 10.4049/jimmunol.1901455] [Reference Citation Analysis]
25 Miano V, Codino A, Pandolfini L, Barbieri I. The non-coding epitranscriptome in cancer. Brief Funct Genomics 2021;20:94-105. [PMID: 33564819 DOI: 10.1093/bfgp/elab003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021;:1-15. [PMID: 34159889 DOI: 10.1080/15476286.2021.1931756] [Reference Citation Analysis]
27 Adeberg S, Knoll M, Koelsche C, Bernhardt D, Schrimpf D, Sahm F, König L, Harrabi SB, Hörner-Rieber J, Verma V, Bewerunge-Hudler M, Unterberg A, Sturm D, Jungk C, Herold-Mende C, Wick W, von Deimling A, Debus J, Rieken S, Abdollahi A. DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathol 2022. [PMID: 35660939 DOI: 10.1007/s00401-022-02443-2] [Reference Citation Analysis]
28 Fazi F, Fatica A. Regulation of Ribosome Function by RNA Modifications in Hematopoietic Development and Leukemia: It Is Not Only a Matter of m6A. Int J Mol Sci 2021;22:4755. [PMID: 33946178 DOI: 10.3390/ijms22094755] [Reference Citation Analysis]
29 Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020;131:110731. [PMID: 32920520 DOI: 10.1016/j.biopha.2020.110731] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
30 Chen YS, Yang WL, Zhao YL, Yang YG. Dynamic transcriptomic m5 C and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA 2021;12:e1639. [PMID: 33438329 DOI: 10.1002/wrna.1639] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
31 Bai M, Sun C. M5C-Related lncRNA Predicts Lung Adenocarcinoma and Tumor Microenvironment Remodeling: Computational Biology and Basic Science. Front Cell Dev Biol 2022;10:885568. [DOI: 10.3389/fcell.2022.885568] [Reference Citation Analysis]
32 Gao Y, Fang J. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark. RNA Biol 2021;:1-11. [PMID: 34288807 DOI: 10.1080/15476286.2021.1950993] [Reference Citation Analysis]
33 Li Y, Xu J, Zhang J, Zhang J, Zhang J, Lu X. MicroRNA-346 inhibits the growth of glioma by directly targeting NFIB. Cancer Cell Int 2019;19:294. [PMID: 31807116 DOI: 10.1186/s12935-019-1017-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
34 Dong Z, Cui H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel) 2020;12:E736. [PMID: 32244981 DOI: 10.3390/cancers12030736] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
35 Song H, Zhang J, Liu B, Xu J, Cai B, Yang H, Straube J, Yu X, Ma T. Biological roles of RNA m5C modification and its implications in Cancer immunotherapy. Biomark Res 2022;10:15. [PMID: 35365216 DOI: 10.1186/s40364-022-00362-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Berdasco M, Esteller M. Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer. Br J Pharmacol 2021. [PMID: 34185879 DOI: 10.1111/bph.15604] [Reference Citation Analysis]
37 Esteve-Puig R, Bueno-Costa A, Esteller M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 2020;474:127-37. [PMID: 31991154 DOI: 10.1016/j.canlet.2020.01.021] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 15.0] [Reference Citation Analysis]
38 Zhang Q, Liu F, Chen W, Miao H, Liang H, Liao Z, Zhang Z, Zhang B. The role of RNA m5C modification in cancer metastasis. Int J Biol Sci 2021;17:3369-80. [PMID: 34512153 DOI: 10.7150/ijbs.61439] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022;79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Reference Citation Analysis]
40 Heissenberger C, Rollins JA, Krammer TL, Nagelreiter F, Stocker I, Wacheul L, Shpylovyi A, Tav K, Snow S, Grillari J, Rogers AN, Lafontaine DLJ, Schosserer M. The ribosomal RNA m5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans. Elife 2020;9:e56205. [PMID: 33289480 DOI: 10.7554/eLife.56205] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Heissenberger C, Liendl L, Nagelreiter F, Gonskikh Y, Yang G, Stelzer EM, Krammer TL, Micutkova L, Vogt S, Kreil DP, Sekot G, Siena E, Poser I, Harreither E, Linder A, Ehret V, Helbich TH, Grillari-Voglauer R, Jansen-Dürr P, Koš M, Polacek N, Grillari J, Schosserer M. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res 2019;47:11807-25. [PMID: 31722427 DOI: 10.1093/nar/gkz1043] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 13.0] [Reference Citation Analysis]
42 Rosselló-Tortella M, Llinàs-Arias P, Sakaguchi Y, Miyauchi K, Davalos V, Setien F, Calleja-Cervantes ME, Piñeyro D, Martínez-Gómez J, Guil S, Joshi R, Villanueva A, Suzuki T, Esteller M. Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. Proc Natl Acad Sci U S A 2020;117:20785-93. [PMID: 32778592 DOI: 10.1073/pnas.2003358117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
43 Janin M, Coll-SanMartin L, Esteller M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer 2020;19:70. [PMID: 32241281 DOI: 10.1186/s12943-020-01192-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Guo G, Pan K, Fang S, Ye L, Tong X, Wang Z, Xue X, Zhang H. Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance. Mol Ther Nucleic Acids 2021;26:575-93. [PMID: 34631286 DOI: 10.1016/j.omtn.2021.08.020] [Reference Citation Analysis]
45 Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. Wiley Interdiscip Rev RNA 2022;13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
46 Cayir A. RNA modifications as emerging therapeutic targets. Wiley Interdiscip Rev RNA 2021;:e1702. [PMID: 34816607 DOI: 10.1002/wrna.1702] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Dang Q, Shao B, Zhou Q, Chen C, Guo Y, Wang G, Liu J, Kan Q, Yuan W, Sun Z. RNA N 6-Methyladenosine in Cancer Metastasis: Roles, Mechanisms, and Applications. Front Oncol 2021;11:681781. [PMID: 34211849 DOI: 10.3389/fonc.2021.681781] [Reference Citation Analysis]
48 Wnuk M, Slipek P, Dziedzic M, Lewinska A. The Roles of Host 5-Methylcytosine RNA Methyltransferases during Viral Infections. Int J Mol Sci 2020;21:E8176. [PMID: 33142933 DOI: 10.3390/ijms21218176] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
49 Matuleviciute R, Cunha PP, Johnson RS, Foskolou IP. Oxygen regulation of TET enzymes. FEBS J 2021. [PMID: 33410283 DOI: 10.1111/febs.15695] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]