BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang M, Perucho JAU, Tse KY, Chu MMY, Ip P, Lee EYP. MRI texture features differentiate clinicopathological characteristics of cervical carcinoma. Eur Radiol 2020;30:5384-91. [PMID: 32382845 DOI: 10.1007/s00330-020-06913-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: Current status and future challenges - A systematic review. Artif Intell Med 2021;120:102164. [PMID: 34629152 DOI: 10.1016/j.artmed.2021.102164] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Kim KE, Kim CK. Magnetic resonance imaging-based texture analysis for the prediction of postoperative clinical outcome in uterine cervical cancer. Abdom Radiol (NY) 2022;47:352-61. [PMID: 34605967 DOI: 10.1007/s00261-021-03288-1] [Reference Citation Analysis]
3 Liu Y, Song T, Dong TF, Zhang W, Wen G. MRI-based radiomics analysis to evaluate the clinicopathological characteristics of cervical carcinoma: a multicenter study. Acta Radiol 2021;:2841851211065142. [PMID: 34918963 DOI: 10.1177/02841851211065142] [Reference Citation Analysis]
4 Gao F, Shi B, Wang P, Wang C, Fang X, Dong J, Lin T. The Value of Intravoxel Incoherent Motion Diffusion-Weighted Magnetic Resonance Imaging Combined With Texture Analysis of Evaluating the Extramural Vascular Invasion in Rectal Adenocarcinoma. Front Oncol 2022;12:813138. [DOI: 10.3389/fonc.2022.813138] [Reference Citation Analysis]
5 Xiao M, Ma X, Ma F, Li Y, Zhang G, Qiang J. Whole-tumor histogram analysis of apparent diffusion coefficient for differentiating adenosquamous carcinoma and adenocarcinoma from squamous cell carcinoma in patients with cervical cancer. Acta Radiol 2021;:2841851211035915. [PMID: 34382429 DOI: 10.1177/02841851211035915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wang M, Perucho JAU, Vardhanabhuti V, Ip P, Ngan HYS, Lee EYP. Radiomic Features of T2-weighted Imaging and Diffusion Kurtosis Imaging in Differentiating Clinicopathological Characteristics of Cervical Carcinoma. Acad Radiol 2021:S1076-6332(21)00376-7. [PMID: 34583867 DOI: 10.1016/j.acra.2021.08.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Guerriero S, Pascual M, Ajossa S, Neri M, Musa E, Graupera B, Rodriguez I, Alcazar JL. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis. Eur J Obstet Gynecol Reprod Biol 2021;261:29-33. [PMID: 33873085 DOI: 10.1016/j.ejogrb.2021.04.012] [Reference Citation Analysis]
8 Wang R, Su Y, Mao C, Li S, You M, Xiang S. Laser lithotripsy for proximal ureteral calculi in adults: can 3D CT texture analysis help predict treatment success? Eur Radiol 2021;31:3734-44. [PMID: 33210203 DOI: 10.1007/s00330-020-07498-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Dieckmeyer M, Inhuber S, Schläger S, Weidlich D, Mookiah MRK, Subburaj K, Burian E, Sollmann N, Kirschke JS, Karampinos DC, Baum T. Association of Thigh Muscle Strength with Texture Features Based on Proton Density Fat Fraction Maps Derived from Chemical Shift Encoding-Based Water-Fat MRI. Diagnostics (Basel) 2021;11:302. [PMID: 33668624 DOI: 10.3390/diagnostics11020302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]