BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Seo N, Chung YE, Park YN, Kim E, Hwang J, Kim MJ. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI. Eur Radiol. 2018;28:2812-2822. [PMID: 29404771 DOI: 10.1007/s00330-017-5292-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Ye Z, Wei Y, Chen J, Yao S, Song B. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis. World J Gastroenterol 2020; 26(23): 3304-3317 [PMID: 32684744 DOI: 10.3748/wjg.v26.i23.3304] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Sharafi A, Baboli R, Zibetti M, Shanbhogue K, Olsen S, Block T, Chandarana H, Regatte R. Volumetric multicomponent T relaxation mapping of the human liver under free breathing at 3T. Magn Reson Med 2020;83:2042-50. [PMID: 31724246 DOI: 10.1002/mrm.28061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
3 Yang D, Li D, Li J, Yang Z, Wang Z. Systematic review: The diagnostic efficacy of gadoxetic acid-enhanced MRI for liver fibrosis staging. Eur J Radiol 2020;125:108857. [PMID: 32113153 DOI: 10.1016/j.ejrad.2020.108857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Fujimoto K, Noda Y, Kawai N, Kajita K, Akamine Y, Kawada H, Hyodo F, Matsuo M. Comparison of mono-exponential, bi-exponential, and stretched exponential diffusion-weighted MR imaging models in differentiating hepatic hemangiomas from liver metastases. Eur J Radiol 2021;141:109806. [PMID: 34120012 DOI: 10.1016/j.ejrad.2021.109806] [Reference Citation Analysis]
5 Kim HC, Seo N, Chung YE, Park MS, Choi JY, Kim MJ. Characterization of focal liver lesions using the stretched exponential model: comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging. Eur Radiol 2019;29:5111-20. [PMID: 30796578 DOI: 10.1007/s00330-019-06048-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
6 Marti-Aguado D, Rodríguez-Ortega A, Alberich-Bayarri A, Marti-Bonmati L. Magnetic Resonance imaging analysis of liver fibrosis and inflammation: overwhelming gray zones restrict clinical use. Abdom Radiol (NY) 2020;45:3557-68. [PMID: 32857259 DOI: 10.1007/s00261-020-02713-1] [Reference Citation Analysis]
7 Li C, Ye J, Prince M, Peng Y, Dou W, Shang S, Wu J, Luo X. Comparing mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted MR imaging for stratifying non-alcoholic fatty liver disease in a rabbit model. Eur Radiol 2020;30:6022-32. [PMID: 32591883 DOI: 10.1007/s00330-020-07005-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Park JH, Chung YE, Seo N, Choi JY, Park MS, Kim MJ. Gadoxetic acid-enhanced MRI of hepatocellular carcinoma: Diagnostic performance of category-adjusted LR-5 using modified criteria. PLoS One 2020;15:e0242344. [PMID: 33186378 DOI: 10.1371/journal.pone.0242344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Im WH, Song JS, Jang W. Noninvasive staging of liver fibrosis: review of current quantitative CT and MRI-based techniques. Abdom Radiol (NY) 2021. [PMID: 34228199 DOI: 10.1007/s00261-021-03181-x] [Reference Citation Analysis]
10 Park JH, Seo N, Chung YE, Kim SU, Park YN, Choi JY, Park MS, Kim MJ. Noninvasive evaluation of liver fibrosis: comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography. Eur Radiol 2021;31:4813-23. [PMID: 33439321 DOI: 10.1007/s00330-020-07600-3] [Reference Citation Analysis]
11 Zhou Y, Zhang HX, Zhang XS, Sun YF, He KB, Sang XQ, Zhu YM, Kuai ZX. Non-mono-exponential diffusion models for assessing early response of liver metastases to chemotherapy in colorectal Cancer. Cancer Imaging 2019;19:39. [PMID: 31217036 DOI: 10.1186/s40644-019-0228-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
12 Tramontano L, Cavaliere C, Salvatore M, Brancato V. The Role of Non-Gaussian Models of Diffusion Weighted MRI in Hepatocellular Carcinoma: A Systematic Review. J Clin Med 2021;10:2641. [PMID: 34203995 DOI: 10.3390/jcm10122641] [Reference Citation Analysis]
13 Lyu J, Yang G, Mei Y, Guo L, Guo Y, Zhang X, Xu Y, Feng Y. Non-Gaussian Diffusion Models and T1 rho Quantification in the Assessment of Hepatic Sinusoidal Obstruction Syndrome in Rats. J Magn Reson Imaging 2020;52:1110-21. [PMID: 32246796 DOI: 10.1002/jmri.27156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Reiter DA, Adelnia F, Cameron D, Spencer RG, Ferrucci L. Parsimonious modeling of skeletal muscle perfusion: Connecting the stretched exponential and fractional Fickian diffusion. Magn Reson Med 2021;86:1045-57. [PMID: 33724547 DOI: 10.1002/mrm.28766] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions. J Magn Reson Imaging 2021. [PMID: 34390617 DOI: 10.1002/jmri.27875] [Reference Citation Analysis]
16 Kuai ZX, Sang XQ, Yao YF, Chu CY, Zhu YM. Evaluation of non-monoexponential diffusion models for hepatocellular carcinoma using b values up to 2000 s/mm2 : A short-term repeatability study. J Magn Reson Imaging 2019;50:297-304. [PMID: 30447032 DOI: 10.1002/jmri.26563] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
17 Li W. Non-Gaussian Diffusion MRI for Evaluating Hepatic Fibrosis. Acad Radiol 2022:S1076-6332(22)00267-7. [PMID: 35597754 DOI: 10.1016/j.acra.2022.04.020] [Reference Citation Analysis]
18 Kim J, Yoon H, Lee MJ, Kim MJ, Han K, Han SJ, Koh H, Kim S, Shin HJ. Clinical utility of mono-exponential model diffusion weighted imaging using two b-values compared to the bi- or stretched exponential model for the diagnosis of biliary atresia in infant liver MRI. PLoS One 2019;14:e0226627. [PMID: 31852012 DOI: 10.1371/journal.pone.0226627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
19 Fu F, Li X, Chen C, Bai Y, Liu Q, Shi D, Sang J, Wang K, Wang M. Non-invasive assessment of hepatic fibrosis: comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI. Abdom Radiol (NY). 2020;45:73-82. [PMID: 31372777 DOI: 10.1007/s00261-019-02140-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Wu R, An DA, Shi RY, Chen BH, Wu CW, Jiang M, Xu JR, Wu LM, Pu J. The feasibility and diagnostic value of intravoxel incoherent motion diffusion-weighted imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy patients. Eur J Radiol 2020;132:109333. [PMID: 33068839 DOI: 10.1016/j.ejrad.2020.109333] [Reference Citation Analysis]
21 Adelnia F, Cameron D, Bergeron CM, Fishbein KW, Spencer RG, Reiter DA, Ferrucci L. The Role of Muscle Perfusion in the Age-Associated Decline of Mitochondrial Function in Healthy Individuals. Front Physiol 2019;10:427. [PMID: 31031645 DOI: 10.3389/fphys.2019.00427] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
22 Seo N, Jeong HK, Choi JY, Park MS, Kim MJ, Chung YE. Liver MRI with amide proton transfer imaging: feasibility and accuracy for the characterization of focal liver lesions. Eur Radiol 2021;31:222-31. [PMID: 32785767 DOI: 10.1007/s00330-020-07122-y] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Zhang Q, Ouyang H, Ye F, Chen S, Xie L, Zhao X, Yu X. Multiple mathematical models of diffusion-weighted imaging for endometrial cancer characterization: Correlation with prognosis-related risk factors. Eur J Radiol 2020;130:109102. [PMID: 32673928 DOI: 10.1016/j.ejrad.2020.109102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhao L, Liang M, Yang Y, Xie L, Zhang H, Zhao X. Value of multiple models of diffusion-weighted imaging for improving the nodal staging of preoperatively node-negative rectal cancer. Abdom Radiol (NY) 2021. [PMID: 34125271 DOI: 10.1007/s00261-021-03125-5] [Reference Citation Analysis]
25 Kim J, Shin HJ, Yoon H, Han SJ, Koh H, Kim MJ, Lee MJ. Diffusion-Weighted Imaging for Differentiation of Biliary Atresia and Grading of Hepatic Fibrosis in Infants with Cholestasis. Korean J Radiol 2021;22:253-62. [PMID: 32901459 DOI: 10.3348/kjr.2020.0055] [Reference Citation Analysis]
26 Kusunoki M, Kikuchi K, Togao O, Yamashita K, Momosaka D, Kikuchi Y, Kuga D, Hata N, Mizoguchi M, Iihara K, Suzuki SO, Iwaki T, Akamine Y, Hiwatashi A. Differentiation of high-grade from low-grade diffuse gliomas using diffusion-weighted imaging: a comparative study of mono-, bi-, and stretched-exponential diffusion models. Neuroradiology 2020;62:815-23. [PMID: 32424712 DOI: 10.1007/s00234-020-02456-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Yoon H, Shin HJ, Kim MJ, Lee MJ. Quantitative Imaging in Pediatric Hepatobiliary Disease. Korean J Radiol 2019;20:1342-57. [PMID: 31464113 DOI: 10.3348/kjr.2019.0002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
28 Besheer T, Elalfy H, Abd El-Maksoud M, Abd El-Razek A, Taman S, Zalata K, Elkashef W, Zaghloul H, Elshahawy H, Raafat D, Elemshaty W, Elsayed E, El-Gilany AH, El-Bendary M. Diffusion-weighted magnetic resonance imaging and micro-RNA in the diagnosis of hepatic fibrosis in chronic hepatitis C virus. World J Gastroenterol 2019; 25(11): 1366-1377 [PMID: 30918429 DOI: 10.3748/wjg.v25.i11.1366] [Cited by in CrossRef: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]