BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Z, Ding Y, Wang F, Ye Y, Zhu C. Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 2016;35:719-31. [PMID: 26849671 DOI: 10.1007/s00299-015-1925-3] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. Sci Total Environ 2023;869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Reference Citation Analysis]
2 Shah G, Tu J, Fayyaz M, Masood S, Ullah H, Jamil M. Moringa oleifera smoke induced positive changes in biochemical, metabolic, and antioxidant profile of rice seedling under cadmium stress. Int J Phytoremediation 2022;:1-11. [PMID: 36573355 DOI: 10.1080/15226514.2022.2157793] [Reference Citation Analysis]
3 Qiu W, Xu T, Li X, Zhang Y, Ren R, Heng Q, Chen W, Zhang S, Wang M, Kou L, Jiang Y, Cui C, Dou W, Li K, Dong H, Zhang L, He H, Chen Y, Fan J, Zhang Y. The influence of phosphorus on leaf function, cadmium accumulation and stress tolerance of poplar leaves under cadmium exposure. Environmental and Experimental Botany 2022;204:105087. [DOI: 10.1016/j.envexpbot.2022.105087] [Reference Citation Analysis]
4 Luo S, Wang K, Li Z, Li H, Shao J, Zhu X. Salicylic Acid Enhances Cadmium Tolerance and Reduces Its Shoot Accumulation in Fagopyrum tataricum Seedlings by Promoting Root Cadmium Retention and Mitigating Oxidative Stress. Int J Mol Sci 2022;23. [PMID: 36499075 DOI: 10.3390/ijms232314746] [Reference Citation Analysis]
5 Wasaya A, Hassan J, Yasir TA, Ateeq M, Raza MA. Foliar Application of Silicon Improved Physiological Indicators, Yield Attributes, and Yield of Pearl Millet (Pennisetum glaucum L.) Under Terminal Drought Stress. J Soil Sci Plant Nutr 2022. [DOI: 10.1007/s42729-022-01047-9] [Reference Citation Analysis]
6 Mahawar L, Shekhawat GS. Understanding the Physiological Mechanism of Heme Oxygenase for Enhanced Tolerance and Phytoremediation of Cd2+ in Eruca sativa: Co-ordinated Function of Antioxidant Defense System. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10825-9] [Reference Citation Analysis]
7 Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci 2022;13:961872. [DOI: 10.3389/fpls.2022.961872] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
8 Sourazar K, Sedghi M, Seyed Sharifi R, Ph.D. Student, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabilli, Ardabil, Iran., Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran., Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.. The effect of priming on physiological and biochemical traits of French bean (Phaseolus vulgaris) under cobalt chloride stress. Iranian J Seed Res 2022;9:111-126. [DOI: 10.52547/yujs.9.1.111] [Reference Citation Analysis]
9 Zadel U, Cruzeiro C, Raj Durai AC, Nesme J, May R, Balázs H, Michalke B, Płaza G, Schröder P, Schloter M, Radl V. Exudates from miscanthus x giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals. Environ Pollut 2022;:119989. [PMID: 36028079 DOI: 10.1016/j.envpol.2022.119989] [Reference Citation Analysis]
10 Wu Q, Jing HK, Feng ZH, Huang J, Shen RF, Zhu XF. Salicylic Acid Acts Upstream of Auxin and Nitric Oxide (NO) in Cell Wall Phosphorus Remobilization in Phosphorus Deficient Rice. Rice (N Y) 2022;15:42. [PMID: 35920901 DOI: 10.1186/s12284-022-00588-y] [Reference Citation Analysis]
11 Li Z, Guan W, Yang L, Yang Y, Yu H, Zou L, Teng Y, El-demerdash FM. Insight into the Vacuolar Compartmentalization Process and the Effect Glutathione Regulation to This Process in the Hyperaccumulator Plant Solanum nigrum L. BioMed Research International 2022;2022:1-11. [DOI: 10.1155/2022/4359645] [Reference Citation Analysis]
12 Wei J, Liao S, Li M, Zhu B, Wang H, Gu L, Yin H, Du X. AetSRG1 contributes to the inhibition of wheat Cd accumulation by stabilizing phenylalanine ammonia lyase. J Hazard Mater 2022;428:128226. [PMID: 35032956 DOI: 10.1016/j.jhazmat.2022.128226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Huang Q, Xu R, Zhang Y, Yan Z, Chen H, Shao G. Salicylic Acid Ameliorates Cadmium Toxicity by Increasing Nutrients Uptake and Upregulating Antioxidant Enzyme Activity and Uptake/Transport-Related Genes in Oryza sativa L. indica. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10620-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Shamsipur M, Mafakheri N, Babajani N. A Natural Deep Eutectic Solvent–based Ultrasound-Vortex-assisted Dispersive Liquid–Liquid Microextraction Method for Ligand-less Pre-concentration and Determination of Traces of Cadmium Ions in Water and Some Food Samples. Food Anal Methods. [DOI: 10.1007/s12161-021-02222-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Liu Z, Sun Z, Zeng C, Dong X, Li M, Liu Z, Yan M. The elemental defense effect of cadmium on Alternaria brassicicola in Brassica juncea. BMC Plant Biol 2022;22:17. [PMID: 34986803 DOI: 10.1186/s12870-021-03398-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Sikdar A, Jeyasundar PGSA, Debnath B, Hossain MS, Islam MA, Ahammed GJ. Cadmium Contamination in the Soil Environment: Impact on Plant Growth and Human Health. Agrochemicals in Soil and Environment 2022. [DOI: 10.1007/978-981-16-9310-6_16] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Gupta S, Seth CS. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiol Mol Biol Plants 2021;27:2651-64. [PMID: 34924716 DOI: 10.1007/s12298-021-01088-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Rai KK, Pandey N, Rai N, Rai SK, Pandey-rai S. Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation of Their Metabolism and Regulatory Functions in Plants. Front Agron 2021;3:781027. [DOI: 10.3389/fagro.2021.781027] [Reference Citation Analysis]
19 Huybrechts M, Hendrix S, Kyndt T, Demeestere K, Vandamme D, Cuypers A. Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Sci 2021;313:111054. [PMID: 34763852 DOI: 10.1016/j.plantsci.2021.111054] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Fardus J, Hossain MS, Fujita M. Potential role of L-glutamic acid in mitigating cadmium toxicity in lentil (Lens culinaris Medik.) through modulating the antioxidant defence system and nutrient homeostasis. Not Bot Horti Agrobo 2021;49:12485. [DOI: 10.15835/nbha49412485] [Reference Citation Analysis]
21 Kang S, Adhikari A, Khan MA, Kwon E, Park Y, Lee I. Influence of the Rhizobacterium Rhodobacter sphaeroides KE149 and Biochar on Waterlogging Stress Tolerance in Glycine max L. Environments 2021;8:94. [DOI: 10.3390/environments8090094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Kaur H, Hussain SJ, Al-Huqail AA, Siddiqui MH, Al-Huqail AA, Khan MIR. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress. Plant Biol (Stuttg) 2021. [PMID: 34516728 DOI: 10.1111/plb.13322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Mazumder MK, Sharma P, Moulick D, Tata SK, Choudhury S. Salicylic acid ameliorates zinc and chromium-induced stress responses in wheat seedlings: a biochemical and computational analysis. CEREAL RESEARCH COMMUNICATIONS. [DOI: 10.1007/s42976-021-00201-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Domańska J, Leszczyńska D, Badora A. The Possibilities of Using Common Buckwheat in Phytoremediation of Mineral and Organic Soils Contaminated with Cd or Pb. Agriculture 2021;11:562. [DOI: 10.3390/agriculture11060562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Luo W, He L, Li F, Li J. Exogenous Salicylic Acid Alleviates the Antimony (Sb) Toxicity in Rice (Oryza sativa L.) Seedlings. J Plant Growth Regul 2021;40:1327-40. [DOI: 10.1007/s00344-020-10192-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kovár M, Navrátilová A, Trakovická A, Požgajová M. Ascorbic acid supplementation suppresses cadmium-derived alterations in the fission yeast Schizosaccharomyces pombe. Potr S J F Sci 2021;15:423-432. [DOI: 10.5219/1618] [Reference Citation Analysis]
27 Nadarajah K, Abdul Hamid NW, Abdul Rahman NSN. SA-Mediated Regulation and Control of Abiotic Stress Tolerance in Rice. Int J Mol Sci 2021;22:5591. [PMID: 34070465 DOI: 10.3390/ijms22115591] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
28 Cui J, Nieves-Cordones M, Rubio F, Tcherkez G. Involvement of salicylic acid in the response to potassium deficiency revealed by metabolomics. Plant Physiol Biochem 2021;163:201-4. [PMID: 33862499 DOI: 10.1016/j.plaphy.2021.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Junková P, Neubergerová M, Kalachova T, Valentová O, Janda M. Regulation of the microsomal proteome by salicylic acid and deficiency of phosphatidylinositol-4-kinases β1 and β2 in Arabidopsis thaliana. Proteomics 2021;21:e2000223. [PMID: 33463038 DOI: 10.1002/pmic.202000223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management. Front Plant Sci 2020;11:587785. [PMID: 33633751 DOI: 10.3389/fpls.2020.587785] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
31 Kang S, Shahzad R, Khan MA, Hasnain Z, Lee K, Park H, Kim L, Lee I. Ameliorative effect of indole-3-acetic acid- and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress. Journal of Plant Interactions 2021;16:30-41. [DOI: 10.1080/17429145.2020.1864039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
32 刘 慧. Effects of Salicylic Acid on the Growth of Rice Seedlings and Its Regulation Mechanism. BR 2021;10:27-34. [DOI: 10.12677/br.2021.101005] [Reference Citation Analysis]
33 Corpas FJ, Gupta DK, Palma JM. Tryptophan: A Precursor of Signaling Molecules in Higher Plants. Hormones and Plant Response 2021. [DOI: 10.1007/978-3-030-77477-6_11] [Reference Citation Analysis]
34 Liu T, Li T, Zhang L, Li H, Liu S, Yang S, An Q, Pan C, Zou N. Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.). Ecotoxicol Environ Saf 2021;208:111654. [PMID: 33396168 DOI: 10.1016/j.ecoenv.2020.111654] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
35 Jia H, Wang X, Wei T, Wang M, Liu X, Hua L, Ren X, Guo J, Li J. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicol Environ Saf 2021;207:111550. [PMID: 33254408 DOI: 10.1016/j.ecoenv.2020.111550] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
36 Hasan MM, Ali MA, Soliman MH, Alqarawi AA, Abd_allah EF, Fang X. Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. Journal of Plant Interactions 2020;15:371-85. [DOI: 10.1080/17429145.2020.1832267] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
37 Wang F, Tan H, Zhang Y, Huang L, Bao H, Ding Y, Chen Z, Zhu C. Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere 2021;263:128034. [PMID: 33297052 DOI: 10.1016/j.chemosphere.2020.128034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
38 Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany 2020;175:104040. [DOI: 10.1016/j.envexpbot.2020.104040] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 17.3] [Reference Citation Analysis]
39 Wang G, Yang D, Zhang Y, Li Q, Ji J, Jin C, Wu G, Guan C. Na+/H+ antiporter (NHX1) positively enhances cadmium (Cd) resistance and decreases Cd accumulation in tobacco plants cultivated in Cd-containing soil. Plant Soil 2020;453:389-408. [DOI: 10.1007/s11104-020-04601-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
40 Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 2020;399:123020. [PMID: 32526442 DOI: 10.1016/j.jhazmat.2020.123020] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 28.3] [Reference Citation Analysis]
41 Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI. Minimizing Adverse Effects of Pb on Maize Plants by Combined Treatment with Jasmonic, Salicylic Acids and Proline. Agronomy 2020;10:699. [DOI: 10.3390/agronomy10050699] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 17.7] [Reference Citation Analysis]
42 Zhang C, He Q, Wang M, Gao X, Chen J, Shen C. Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). Ecotoxicology and Environmental Safety 2020;190:110090. [DOI: 10.1016/j.ecoenv.2019.110090] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
43 Xu X, Chen Q, Mo S, Qian Y, Wu X, Jin Y, Ding H. Transcriptome -wide modulation combined with morpho-physiological analyses of Typha orientalis roots in response to lead challenge. Journal of Hazardous Materials 2020;384:121405. [DOI: 10.1016/j.jhazmat.2019.121405] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
44 Abd El-samad HM, Abd Nabi SH, Abd El-hakeem KNS. Interactive Effect of Sewage Sludge Application with Phytohormones IAA or SA on Three Broad Bean Cultivars. AJPS 2020;11:880-895. [DOI: 10.4236/ajps.2020.116064] [Reference Citation Analysis]
45 Feng K, Liu JX, Xing GM, Sun S, Li S, Duan AQ, Wang F, Li MY, Xu ZS, Xiong AS. Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 2019;7:e7925. [PMID: 31660275 DOI: 10.7717/peerj.7925] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
46 Pan C, Lu H, Liu J, Yu J, Wang Q, Li J, Yang J, Hong H, Yan C. SODs involved in the hormone mediated regulation of H2O2 content in Kandelia obovata root tissues under cadmium stress. Environ Pollut 2020;256:113272. [PMID: 31672353 DOI: 10.1016/j.envpol.2019.113272] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
47 Singh S, Singh VP, Prasad SM, Sharma S, Ramawat N, Dubey NK, Tripathi DK, Chauhan DK. Interactive Effect of Silicon (Si) and Salicylic Acid (SA) in Maize Seedlings and Their Mechanisms of Cadmium (Cd) Toxicity Alleviation. J Plant Growth Regul 2019;38:1587-97. [DOI: 10.1007/s00344-019-09958-1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
48 Faraz A, Faizan M, Sami F, Siddiqui H, Hayat S. Supplementation of Salicylic Acid and Citric Acid for Alleviation of Cadmium Toxicity to Brassica juncea. J Plant Growth Regul 2020;39:641-55. [DOI: 10.1007/s00344-019-10007-0] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
49 Jan M, Shah G, Masood S, Iqbal Shinwari K, Hameed R, Rha ES, Jamil M. Bacillus Cereus Enhanced Phytoremediation Ability of Rice Seedlings under Cadmium Toxicity. Biomed Res Int 2019;2019:8134651. [PMID: 31428647 DOI: 10.1155/2019/8134651] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
50 Zhou Y, Liu C, Li G, Hao L. Ethylene insensitive mutation increases Arabidopsis tolerance to Cd in NPR1-dependent manner. Plant Soil 2019;441:49-69. [DOI: 10.1007/s11104-019-04080-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
51 Romero-puertas MC, Terrón-camero LC, Peláez-vico MÁ, Olmedilla A, Sandalio LM. Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environmental and Experimental Botany 2019;161:107-19. [DOI: 10.1016/j.envexpbot.2018.10.012] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 15.8] [Reference Citation Analysis]
52 Shahid M, Natasha, Khalid S, Abbas G, Niazi NK, Murtaza B, Rashid MI, Bibi I. Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulatory Networks. Plant Metallomics and Functional Omics 2019. [DOI: 10.1007/978-3-030-19103-0_5] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
53 Kuriakose SV, Prasad MNV. Cadmium-Induced Toxicity in Sorghum bicolor—Alleviation by Zinc and Aggravation by Phosphate. Cadmium Tolerance in Plants. Elsevier; 2019. pp. 193-221. [DOI: 10.1016/b978-0-12-815794-7.00007-2] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
54 Joshi R, Dkhar J, Singla-pareek SL, Pareek A. Molecular Mechanism and Signaling Response of Heavy Metal Stress Tolerance in Plants. Plant-Metal Interactions 2019. [DOI: 10.1007/978-3-030-20732-8_2] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
55 Wang YY, Wang Y, Li GZ, Hao L. Salicylic acid-altering Arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicol Environ Saf 2019;169:645-53. [PMID: 30496997 DOI: 10.1016/j.ecoenv.2018.11.062] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
56 Bilal S, Khan AL, Shahzad R, Kim Y, Imran M, Khan MJ, Al-harrasi A, Kim TH, Lee I. Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicology and Environmental Safety 2018;164:648-58. [DOI: 10.1016/j.ecoenv.2018.08.043] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
57 Gutsch A, Zouaghi S, Renaut J, Cuypers A, Hausman JF, Sergeant K. Changes in the Proteome of Medicago sativa Leaves in Response to Long-Term Cadmium Exposure Using a Cell-Wall Targeted Approach. Int J Mol Sci 2018;19:E2498. [PMID: 30149497 DOI: 10.3390/ijms19092498] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
58 Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Bioscience, Biotechnology, and Biochemistry 2018;82:1265-300. [DOI: 10.1080/09168451.2018.1462693] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 7.2] [Reference Citation Analysis]
59 Guo J, Zhou R, Ren X, Jia H, Hua L, Xu H, Lv X, Zhao J, Wei T. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants. Ecotoxicology and Environmental Safety 2018;157:491-6. [DOI: 10.1016/j.ecoenv.2018.04.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
60 Ma X, Yu D, Shao W, Xu M, Zuo Z, Wang H, Meng Y. Transcriptome-wide identification and characterization of the copper and cadmium stress-responsive small RNAs and their targets in Arabidopsis thaliana. Plant Soil 2018;429:391-405. [DOI: 10.1007/s11104-018-3697-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
61 Wei T, Lv X, Jia H, Hua L, Xu H, Zhou R, Zhao J, Ren X, Guo J. Effects of salicylic acid, Fe(II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes. Journal of Environmental Management 2018;214:164-71. [DOI: 10.1016/j.jenvman.2018.02.100] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
62 Rizwan M, Ali S, Zia Ur Rehman M, Rinklebe J, Tsang DCW, Bashir A, Maqbool A, Tack FMG, Ok YS. Cadmium phytoremediation potential of Brassica crop species: A review. Sci Total Environ 2018;631-632:1175-91. [PMID: 29727943 DOI: 10.1016/j.scitotenv.2018.03.104] [Cited by in Crossref: 195] [Cited by in F6Publishing: 166] [Article Influence: 39.0] [Reference Citation Analysis]
63 Ran X, Liu J, Qi M, Wang Y, Cheng J, Zhang Y. GSHR, a Web-Based Platform Provides Gene Set-Level Analyses of Hormone Responses in Arabidopsis. Front Plant Sci 2018;9:23. [PMID: 29416546 DOI: 10.3389/fpls.2018.00023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
64 Li ZG, Nie Q, Yang CL, Wang Y, Zhou ZH. Signaling molecule methylglyoxal ameliorates cadmium injury in wheat (Triticum aestivum L) by a coordinated induction of glutathione pool and glyoxalase system. Ecotoxicol Environ Saf 2018;149:101-7. [PMID: 29154133 DOI: 10.1016/j.ecoenv.2017.11.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
65 Kang SM, Shahzad R, Bilal S, Khan AL, You YH, Lee WH, Ryu HL, Lee KE, Lee IJ. Metabolism-mediated induction of zinc tolerance in Brassica rapa by Burkholderia cepacia CS2-1. J Microbiol 2017;55:955-65. [PMID: 29214486 DOI: 10.1007/s12275-017-7305-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
66 Mahmud JA, Hasanuzzaman M, Nahar K, Bhuyan MHMB, Fujita M. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 2018;147:990-1001. [PMID: 29976011 DOI: 10.1016/j.ecoenv.2017.09.045] [Cited by in Crossref: 119] [Cited by in F6Publishing: 99] [Article Influence: 19.8] [Reference Citation Analysis]
67 Zong H, Li K, Liu S, Song L, Xing R, Chen X, Li P. Improvement in cadmium tolerance of edible rape ( Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere 2017;181:92-100. [DOI: 10.1016/j.chemosphere.2017.04.024] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 7.8] [Reference Citation Analysis]
68 Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress. Front Plant Sci 2017;8:870. [PMID: 28611799 DOI: 10.3389/fpls.2017.00870] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
69 Jung IJ, Hwang JE, Han SM, Kim DS, Ahn JW, Choi HI, Kwon SJ, Kang SY, Kim JB. Molecular dissection of the response of the rice Systemic Acquired Resistance Deficient 1 (SARD1) gene to different types of ionizing radiation. Int J Radiat Biol 2017;93:717-25. [PMID: 28299960 DOI: 10.1080/09553002.2017.1297901] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
70 Shakirova FM, Bezrukova MV, Allagulova CR, Maslennikova DR, Lubyanova AR. Wheat Germ Agglutinin and Dehydrins as ABA-Regulated Components of SA-Induced Cadmium Resistance in Wheat Plants. Salicylic Acid: A Multifaceted Hormone 2017. [DOI: 10.1007/978-981-10-6068-7_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
71 Li ZG, Duan XQ, Xia YM, Wang Y, Zhou ZH, Min X. Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L). Plant Cell Rep 2017;36:367-70. [PMID: 27838814 DOI: 10.1007/s00299-016-2070-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
72 Okem A, Moyo M, Stirk WA, Finnie JF, Van Staden J, Luo Z. Investigating the effect of cadmium and aluminium on growth and stress-induced responses in the micropropagated medicinal plant Hypoxis hemerocallidea. Plant Biol J 2016;18:805-15. [DOI: 10.1111/plb.12480] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]