BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dhanavel S, Revathy TA, Sivaranjani T, Sivakumar K, Palani P, Narayanan V, Stephen A. 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym Bull 2020;77:213-33. [DOI: 10.1007/s00289-019-02734-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Maulvi FA, Soni PD, Patel PJ, Desai AR, Desai DT, Shukla MR, Shah SA, Shah DO, Willcox MDP. Controlled bimatoprost release from graphene oxide laden contact lenses: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2021;208:112096. [PMID: 34530331 DOI: 10.1016/j.colsurfb.2021.112096] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020;250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
3 Daneshmoghanlou E, Miralinaghi M, Moniri E, Sadjady SK. Fabrication of a pH-Responsive Magnetic Nanocarrier Based on Carboxymethyl Cellulose-Aminated Graphene Oxide for Loading and In-Vitro Release of Curcumin. J Polym Environ. [DOI: 10.1007/s10924-022-02467-5] [Reference Citation Analysis]
4 Rajabzadeh-khosroshahi M, Pourmadadi M, Yazdian F, Rashedi H, Navaei-nigjeh M, Rasekh B. Chitosan/agarose/graphitic carbon nitride nanocomposite as an efficient pH-sensitive drug delivery system for anticancer curcumin releasing. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103443] [Reference Citation Analysis]
5 Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm 2022;3. [DOI: 10.1002/mco2.118] [Reference Citation Analysis]
6 El-zahed MM, Baka ZA, Abou-dobara MI, El-sayed AK, Aboser MM, Hyder A. In vivo toxicity and antitumor activity of newly green synthesized reduced graphene oxide/silver nanocomposites. Bioresour Bioprocess 2021;8. [DOI: 10.1186/s40643-021-00400-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Meng Y, Wang S, Guo Z, Cheng M, Li J, Li D. Design and preparation of quaternized pectin-Montmorillonite hybrid film for sustained drug release. International Journal of Biological Macromolecules 2020;154:413-20. [DOI: 10.1016/j.ijbiomac.2020.03.140] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
8 Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Al-Hamoud GA. Facile multifunctional-mode of fabricated biocompatible human serum albumin/reduced graphene oxide/Cladophora glomeratananoparticles for bacteriostatic phototherapy, bacterial tracking and antioxidant potential. Nanotechnology 2021;32. [PMID: 33794506 DOI: 10.1088/1361-6528/abf457] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sanad MF, Shalan AE, Bazid SM, Abu Serea ES, Hashem EM, Nabih S, Ahsan MA. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 2019;9:31021-9. [DOI: 10.1039/c9ra05669f] [Cited by in Crossref: 25] [Article Influence: 8.3] [Reference Citation Analysis]
10 Jhang J, Chou Y, Wang T, Hsieh M, Chiang W. One-pot green reduction and surface decoration of graphene oxide nanosheets with PEGylated chitosan for application in cancer photothermal therapy. Journal of the Taiwan Institute of Chemical Engineers 2022;134:104359. [DOI: 10.1016/j.jtice.2022.104359] [Reference Citation Analysis]
11 Grant JJ, Pillai SC, Perova TS, Hehir S, Hinder SJ, Mcafee M, Breen A. Electrospun Fibres of Chitosan/PVP for the Effective Chemotherapeutic Drug Delivery of 5-Fluorouracil. Chemosensors 2021;9:70. [DOI: 10.3390/chemosensors9040070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Hu Q, Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int J Biol Macromol 2021;179:125-35. [PMID: 33667554 DOI: 10.1016/j.ijbiomac.2021.02.216] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
13 Kazemi S, Pourmadadi M, Yazdian F, Ghadami A. The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. Int J Biol Macromol 2021;186:554-62. [PMID: 34216673 DOI: 10.1016/j.ijbiomac.2021.06.184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Pourmadadi M, Ahmadi M, Abdouss M, Yazdian F, Rashedi H, Navaei-nigjeh M, Hesari Y. The synthesis and characterization of double nanoemulsion for targeted Co-Delivery of 5-fluorouracil and curcumin using pH-sensitive agarose/chitosan nanocarrier. Journal of Drug Delivery Science and Technology 2022;70:102849. [DOI: 10.1016/j.jddst.2021.102849] [Reference Citation Analysis]
15 Wang S, Meng Y, Li J, Liu J, Liu Z, Li D. A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films. International Journal of Biological Macromolecules 2020;157:170-6. [DOI: 10.1016/j.ijbiomac.2020.04.197] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
16 Murugesan S, Scheibel T. Chitosan‐based nanocomposites for medical applications. Journal of Polymer Science 2021;59:1610-42. [DOI: 10.1002/pol.20210251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
17 Dhanavel S, Praveena P, Narayanan V, Stephen A. Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym Bull 2020;77:5681-96. [DOI: 10.1007/s00289-019-03039-9] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 Kaplan A. The nanocomposites designs of phytomolecules from medicinal and aromatic plants: promising anticancer-antiviral applications. Beni-Suef Univ J Basic Appl Sci 2022;11. [DOI: 10.1186/s43088-022-00198-z] [Reference Citation Analysis]
19 Jha R, Singh A, Sharma PK, Porwal O, Fuloria NK. Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. J Pharm Investig 2021;51:245-80. [DOI: 10.1007/s40005-021-00513-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ganna S, Gutturu R, Borelli DP, Rao KM, Mallikarjuna K, Nannepaga JS. Formulation, optimization, and in vitro characterization of omega-3-rich binary lipid carriers for curcumin delivery: in vitro evaluation of sustained release and its potential antioxidant behavior. Polym Bull 2022;79:307-30. [DOI: 10.1007/s00289-020-03494-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Jubeen F, Liaqat A, Amjad F, Sultan M, Iqbal SZ, Sajid I, Khan Niazi MB, Sher F. Synthesis of 5-Fluorouracil Cocrystals with Novel Organic Acids as Coformers and Anticancer Evaluation against HCT-116 Colorectal Cell Lines. Crystal Growth & Design 2020;20:2406-14. [DOI: 10.1021/acs.cgd.9b01570] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
22 Rahdar A, Hajinezhad MR, Hamishekar H, Ghamkhari A, Kyzas GZ. Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polym Bull 2021;78:4877-98. [DOI: 10.1007/s00289-020-03354-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]