BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nobuoka D, Yoshikawa T, Takahashi M, Iwama T, Horie K, Shimomura M, Suzuki S, Sakemura N, Nakatsugawa M, Sadamori H, Yagi T, Fujiwara T, Nakatsura T. Intratumoral peptide injection enhances tumor cell antigenicity recognized by cytotoxic T lymphocytes: a potential option for improvement in antigen-specific cancer immunotherapy. Cancer Immunol Immunother. 2013;62:639-652. [PMID: 23143746 DOI: 10.1007/s00262-012-1366-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Rosato PC, Wijeyesinghe S, Stolley JM, Nelson CE, Davis RL, Manlove LS, Pennell CA, Blazar BR, Chen CC, Geller MA, Vezys V, Masopust D. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat Commun 2019;10:567. [PMID: 30718505 DOI: 10.1038/s41467-019-08534-1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 25.7] [Reference Citation Analysis]
2 Xu W, Liu K, Chen M, Sun JY, McCaughan GW, Lu XJ, Ji J. Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives.Ther Adv Med Oncol. 2019;11:1758835919862692. [PMID: 31384311 DOI: 10.1177/1758835919862692] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
3 Nobuoka D, Yoshikawa T, Fujiwara T, Nakatsura T. Peptide intra-tumor injection for cancer immunotherapy: enhancement of tumor cell antigenicity is a novel and attractive strategy. Hum Vaccin Immunother 2013;9:1234-6. [PMID: 23411443 DOI: 10.4161/hv.23990] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
4 Iwama T, Uchida T, Sawada Y, Tsuchiya N, Sugai S, Fujinami N, Shimomura M, Yoshikawa T, Zhang R, Uemura Y. Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem Biophys Res Commun. 2016;469:138-143. [PMID: 26616051 DOI: 10.1016/j.bbrc.2015.11.084] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
5 Shimizu Y, Suzuki T, Yoshikawa T, Tsuchiya N, Sawada Y, Endo I, Nakatsura T. Cancer immunotherapy-targeted glypican-3 or neoantigens. Cancer Sci. 2018;109:531-541. [PMID: 29285841 DOI: 10.1111/cas.13485] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
6 Peng S, Tan M, Li YD, Cheng MA, Farmer E, Ferrall L, Gaillard S, Roden RBS, Hung CF, Wu TC. PD-1 blockade synergizes with intratumoral vaccination of a therapeutic HPV protein vaccine and elicits regression of tumor in a preclinical model. Cancer Immunol Immunother 2021;70:1049-62. [PMID: 33108473 DOI: 10.1007/s00262-020-02754-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
7 Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020;10:397. [PMID: 32351878 DOI: 10.3389/fonc.2020.00397] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
8 Liu Q, Wang Y, Wang H, Liu Y, Liu T, Kunda PE. Tandem therapy for retinoblastoma: immunotherapy and chemotherapy enhance cytotoxicity on retinoblastoma by increasing apoptosis. J Cancer Res Clin Oncol 2013;139:1357-72. [DOI: 10.1007/s00432-013-1448-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
9 Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015;4:e974411. [PMID: 26137405 DOI: 10.4161/2162402X.2014.974411] [Cited by in Crossref: 73] [Cited by in F6Publishing: 53] [Article Influence: 10.4] [Reference Citation Analysis]
10 Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018;292:256-76. [PMID: 30312721 DOI: 10.1016/j.jconrel.2018.10.008] [Cited by in Crossref: 80] [Cited by in F6Publishing: 53] [Article Influence: 20.0] [Reference Citation Analysis]
11 Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 2018;38:741-767. [PMID: 28621802 DOI: 10.1002/med.21455] [Cited by in Crossref: 87] [Cited by in F6Publishing: 100] [Article Influence: 17.4] [Reference Citation Analysis]
12 Marchan J. In silico identification of epitopes present in human heat shock proteins (HSPs) overexpressed by tumour cells. J Immunol Methods 2019;471:34-45. [PMID: 31129262 DOI: 10.1016/j.jim.2019.05.005] [Reference Citation Analysis]
13 Fujinami N, Yoshikawa T, Sawada Y, Shimomura M, Iwama T, Sugai S, Kitano S, Uemura Y, Nakatsura T. Enhancement of antitumor effect by peptide vaccine therapy in combination with anti-CD4 antibody: Study in a murine model. Biochem Biophys Rep. 2016;5:482-491. [PMID: 28955856 DOI: 10.1016/j.bbrep.2016.02.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
14 Yoshikawa T, Takahara M, Tomiyama M, Nieda M, Maekawa R, Nakatsura T. Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy. Int J Oncol 2014;45:1847-56. [PMID: 25189159 DOI: 10.3892/ijo.2014.2634] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
15 Shimizu Y, Suzuki T, Yoshikawa T, Endo I, Nakatsura T. Next-Generation Cancer Immunotherapy Targeting Glypican-3. Front Oncol 2019;9:248. [PMID: 31024850 DOI: 10.3389/fonc.2019.00248] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
16 Shimizu Y, Yoshikawa T, Kojima T, Shoda K, Nosaka K, Mizuno S, Wada S, Fujimoto Y, Sasada T, Kohashi K, Bando H, Endo I, Nakatsura T. Heat shock protein 105 peptide vaccine could induce antitumor immune reactions in a phase I clinical trial. Cancer Sci 2019;110:3049-60. [PMID: 31390678 DOI: 10.1111/cas.14165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
17 Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I, Nakatsura T. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol. 2015;46:28-36. [PMID: 25354479 DOI: 10.3892/ijo.2014.2737] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 6.9] [Reference Citation Analysis]
18 Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019;9:7807-25. [PMID: 31695802 DOI: 10.7150/thno.37194] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
19 Akazawa Y, Nobuoka D, Takahashi M, Yoshikawa T, Shimomura M, Mizuno S, Fujiwara T, Nakamoto Y, Nakatsura T. Higher human lymphocyte antigen class I expression in early-stage cancer cells leads to high sensitivity for cytotoxic T lymphocytes. Cancer Sci 2019;110:1842-52. [PMID: 30973665 DOI: 10.1111/cas.14022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Zhou T, Peng J, Hao Y, Shi K, Zhou K, Yang Y, Yang C, He X, Chen X, Qian Z. The construction of a lymphoma cell-based, DC-targeted vaccine, and its application in lymphoma prevention and cure. Bioact Mater 2021;6:697-711. [PMID: 33005832 DOI: 10.1016/j.bioactmat.2020.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi R, Takahashi Y, Takakura Y, Nishikawa M. Induction of Potent Antitumor Immunity by Sustained Release of Cationic Antigen from a DNA-Based Hydrogel with Adjuvant Activity. Adv Funct Mater 2015;25:5758-67. [DOI: 10.1002/adfm.201502139] [Cited by in Crossref: 59] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
22 Akazawa Y, Suzuki T, Yoshikawa T, Mizuno S, Nakamoto Y, Nakatsura T. Prospects for immunotherapy as a novel therapeutic strategy against hepatocellular carcinoma. World J Meta-Anal 2019; 7(3): 80-95 [DOI: 10.13105/wjma.v7.i3.80] [Reference Citation Analysis]
23 Qin H, Ding Y, Mujeeb A, Zhao Y, Nie G. Tumor Microenvironment Targeting and Responsive Peptide-Based Nanoformulations for Improved Tumor Therapy. Mol Pharmacol 2017;92:219-31. [PMID: 28420679 DOI: 10.1124/mol.116.108084] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
24 Ward-Kavanagh LK, Kokolus KM, Cooper TK, Lukacher AE, Schell TD. Combined sublethal irradiation and agonist anti-CD40 enhance donor T cell accumulation and control of autochthonous murine pancreatic tumors. Cancer Immunol Immunother 2018;67:639-52. [PMID: 29332158 DOI: 10.1007/s00262-018-2115-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
25 Liaskos C, Rigopoulou EI, Orfanidou T, Bogdanos DP, Papandreou CN. CUZD1 and anti-CUZD1 antibodies as markers of cancer and inflammatory bowel diseases. Clin Dev Immunol. 2013;2013:968041. [PMID: 23710207 DOI: 10.1155/2013/968041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
26 Iwama T, Horie K, Yoshikawa T, Nobuoka D, Shimomura M, Sawada Y, Nakatsura T. Identification of an H2-Kb or H2-Db restricted and glypican-3-derived cytotoxic T-lymphocyte epitope peptide. Int J Oncol 2013;42:831-8. [PMID: 23354275 DOI: 10.3892/ijo.2013.1793] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]