1 |
Ye Z, Xuan R, Ouyang M, Wang Y, Xu J, Jin W. Prediction of placenta accreta spectrum by combining deep learning and radiomics using T2WI: a multicenter study. Abdom Radiol (NY) 2022;47:4205-18. [PMID: 36094660 DOI: 10.1007/s00261-022-03673-4] [Reference Citation Analysis]
|
2 |
Peng L, Zhang X, Liu J, Liu Y, Huang J, Chen J, Su Y, Yang Z, Song T. MRI-radiomics-clinical-based nomogram for prenatal prediction of the placenta accreta spectrum disorders. Eur Radiol 2022;32:7532-43. [PMID: 35587828 DOI: 10.1007/s00330-022-08821-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Stanzione A, Verde F, Cuocolo R, Romeo V, Paolo Mainenti P, Brunetti A, Maurea S. Placenta Accreta Spectrum Disorders and Radiomics: Systematic review and quality appraisal. Eur J Radiol 2022;155:110497. [PMID: 36030661 DOI: 10.1016/j.ejrad.2022.110497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Dong L, Lei Z, Zhang J, Sun Z, Li Y. Texture analysis of myometrium-derived T2WI in the evaluation of placenta increta: An observational retrospective study. Placenta 2022;126:32-9. [PMID: 35738112 DOI: 10.1016/j.placenta.2022.06.002] [Reference Citation Analysis]
|
5 |
Ren H, Mori N, Mugikura S, Takase K. Grading of placental accrete spectrum using texture analysis of magnetic resonance imaging. Clinical Imaging 2022;85:8-9. [DOI: 10.1016/j.clinimag.2022.02.018] [Reference Citation Analysis]
|
6 |
Ren H, Mori N. Letter to "Development and validation of a magnetic resonance imaging-based nomogram for predicting invasive forms of placental accreta spectrum disorders". J Obstet Gynaecol Res 2021;47:4502-3. [PMID: 34494342 DOI: 10.1111/jog.15024] [Reference Citation Analysis]
|