BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cannella R, Borhani AA, Tublin M, Behari J, Furlan A. Diagnostic value of MR-based texture analysis for the assessment of hepatic fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). Abdom Radiol (NY) 2019;44:1816-24. [PMID: 30788556 DOI: 10.1007/s00261-019-01931-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Frøkjær JB, Lisitskaya MV, Jørgensen AS, Østergaard LR, Hansen TM, Drewes AM, Olesen SS. Pancreatic magnetic resonance imaging texture analysis in chronic pancreatitis: a feasibility and validation study. Abdom Radiol 2020;45:1497-506. [DOI: 10.1007/s00261-020-02512-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
2 Schawkat K, Ciritsis A, von Ulmenstein S, Honcharova-Biletska H, Jüngst C, Weber A, Gubler C, Mertens J, Reiner CS. Diagnostic accuracy of texture analysis and machine learning for quantification of liver fibrosis in MRI: correlation with MR elastography and histopathology. Eur Radiol 2020;30:4675-85. [PMID: 32270315 DOI: 10.1007/s00330-020-06831-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
3 Zhao R, Gong XJ, Ge YQ, Zhao H, Wang LS, Yu HZ, Liu B. Use of Texture Analysis on Noncontrast MRI in Classification of Early Stage of Liver Fibrosis. Can J Gastroenterol Hepatol 2021;2021:6677821. [PMID: 33791254 DOI: 10.1155/2021/6677821] [Reference Citation Analysis]
4 Zheng R, Shi C, Wang C, Shi N, Qiu T, Chen W, Shi Y, Wang H. Imaging-Based Staging of Hepatic Fibrosis in Patients with Hepatitis B: A Dynamic Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI. Biomolecules 2021;11:307. [PMID: 33670596 DOI: 10.3390/biom11020307] [Reference Citation Analysis]
5 Galm BP, Buckless C, Swearingen B, Torriani M, Klibanski A, Bredella MA, Tritos NA. MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands. Pituitary 2020;23:212-22. [DOI: 10.1007/s11102-019-01023-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Xu X, Zhu H, Li R, Lin H, Grimm R, Fu C, Yan F. Whole-liver histogram and texture analysis on T1 maps improves the risk stratification of advanced fibrosis in NAFLD. Eur Radiol 2021;31:1748-59. [PMID: 32897416 DOI: 10.1007/s00330-020-07235-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Vernuccio F, Cannella R, Bartolotta TV, Galia M, Tang A, Brancatelli G. Advances in liver US, CT, and MRI: moving toward the future. Eur Radiol Exp 2021;5:52. [PMID: 34873633 DOI: 10.1186/s41747-021-00250-0] [Reference Citation Analysis]
8 Thomas JV, Abou Elkassem AM, Ganeshan B, Smith AD. MR Imaging Texture Analysis in the Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020;28:447-56. [PMID: 32624161 DOI: 10.1016/j.mric.2020.03.009] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang J, Li H, Zhou X, Gao X, Wang M. A study of hepatic fibrosis staging methods using diffraction enhanced imaging. J Image Video Proc 2020;2020. [DOI: 10.1186/s13640-020-00520-8] [Reference Citation Analysis]
10 Taouli B, Alves FC. Imaging biomarkers of diffuse liver disease: current status. Abdom Radiol (NY) 2020;45:3381-5. [PMID: 32583139 DOI: 10.1007/s00261-020-02619-y] [Reference Citation Analysis]
11 Im WH, Song JS, Jang W. Noninvasive staging of liver fibrosis: review of current quantitative CT and MRI-based techniques. Abdom Radiol (NY) 2021. [PMID: 34228199 DOI: 10.1007/s00261-021-03181-x] [Reference Citation Analysis]
12 Yeung J, Ganeshan B, Endozo R, Hall A, Wan S, Groves A, Taylor SA, Bandula S. Equilibrium CT Texture Analysis for the Evaluation of Hepatic Fibrosis: Preliminary Evaluation against Histopathology and Extracellular Volume Fraction. J Pers Med 2020;10:E46. [PMID: 32485820 DOI: 10.3390/jpm10020046] [Reference Citation Analysis]