BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020;104:8965-77. [PMID: 32875362 DOI: 10.1007/s00253-020-10856-w] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. Journal of Molecular Structure 2023;1271:133977. [DOI: 10.1016/j.molstruc.2022.133977] [Reference Citation Analysis]
2 Al Khoury C, Nemer G, Guillot J, Tokajian S. Absolute quantification of gene expression in drug discovery using RT-qPCR: Case of a drug used in the treatment of leishmaniasis. Research in Veterinary Science 2022;153:17-22. [DOI: 10.1016/j.rvsc.2022.10.012] [Reference Citation Analysis]
3 Santos AL, Lima AKC, Oliveira SS, dos Santos RF, Devereux M, Mccann M, Branquinha MH, Dutra PM. Decoding the anti-Leishmania braziliensis activity of 1,10-phenanthroline-5,6-dione and its silver- and copper-based complexes: In vitro and in vivo approaches. European Journal of Medicinal Chemistry Reports 2022;6:100093. [DOI: 10.1016/j.ejmcr.2022.100093] [Reference Citation Analysis]
4 Pacinella G, Miceli S, Tuttolomondo A. A curious case of pancytopenia and fever in a patient with Erdheim–Chester disease. Intern Emerg Med 2022. [DOI: 10.1007/s11739-022-03153-z] [Reference Citation Analysis]
5 Jézéquel G, Cardoso LNDF, Olivon F, Dennemont I, Apel C, Litaudon M, Roussi F, Pomel S, Desrat S. Synthesis and Anti-Leishmanial Properties of Quinolones Derived from Zanthosimuline. Molecules 2022;27:7892. [DOI: 10.3390/molecules27227892] [Reference Citation Analysis]
6 Sabt A, Eldehna WM, Ibrahim TM, Bekhit AA, Batran RZ. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114959] [Reference Citation Analysis]
7 Wasan E, Mandava T, Crespo-moran P, Nagy A, Wasan KM. Review of Novel Oral Amphotericin B Formulations for the Treatment of Parasitic Infections. Pharmaceutics 2022;14:2316. [DOI: 10.3390/pharmaceutics14112316] [Reference Citation Analysis]
8 Hernández-rivera JL, Espinoza-hicks JC, Chacón-vargas KF, Carrillo-campos J, Sánchez-torres LE, Camacho-dávila AA. Synthesis, characterization and evaluation of prenylated chalcones ethers as promising antileishmanial compounds. Mol Divers 2022. [DOI: 10.1007/s11030-022-10542-1] [Reference Citation Analysis]
9 Mansur-Alves I, Lima BLF, Santos TT, Araújo NF, Frézard F, Islam A, de Barros AL, Dos Santos DC, Fernandes C, Ferreira LA, Aguiar MM. Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine (Lond) 2022. [PMID: 36189757 DOI: 10.2217/nnm-2021-0489] [Reference Citation Analysis]
10 Mengarda AC, Iles B, Longo JPF, de Moraes J. Recent approaches in nanocarrier‐based therapies for neglected tropical diseases. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1852] [Reference Citation Analysis]
11 Amado PSM, Costa ICC, Paixão JA, Mendes RF, Cortes S, Cristiano MLS. Synthesis, Structure and Antileishmanial Evaluation of Endoperoxide–Pyrazole Hybrids. Molecules 2022;27:5401. [DOI: 10.3390/molecules27175401] [Reference Citation Analysis]
12 Soni M, Pratap JV. Development of Novel Anti-Leishmanials: The Case for Structure-Based Approaches. Pathogens 2022;11:950. [PMID: 36015070 DOI: 10.3390/pathogens11080950] [Reference Citation Analysis]
13 de Queiroz AC, Barbosa G, de Oliveira VRT, de Mattos Alves H, Alves MA, Carregaro V, Santana da Silva J, Barreiro EJ, Alexandre-moreira MS, Lima LM. Pre-clinical evaluation of LASSBio-1491: From in vitro pharmacokinetic study to in vivo leishmanicidal activity. PLoS ONE 2022;17:e0269447. [DOI: 10.1371/journal.pone.0269447] [Reference Citation Analysis]
14 Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Medical Sciences 2022;10:24. [DOI: 10.3390/medsci10020024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022;13:856686. [PMID: 35422792 DOI: 10.3389/fmicb.2022.856686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Magalhães TBDS, Silva DKC, Teixeira JDS, De Lima JDT, Barbosa-Filho JM, Moreira DRM, Guimarães ET, Soares MBP. A Betulinic Acid Derivative, BA5, Induces G0/G1 Cell Arrest, Apoptosis Like-Death, and Morphological Alterations in Leishmania sp. Front Pharmacol 2022;13:846123. [PMID: 35392556 DOI: 10.3389/fphar.2022.846123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Rocha V, Quadros H, Meira C, Silva L, Carvalho D, Hodel K, Moreira D, Soares M. Potential of Triterpenic Natural Compound Betulinic Acid for Neglected Tropical Diseases New Treatments. Biomedicines 2022;10:831. [DOI: 10.3390/biomedicines10040831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Branquinha MH, Araújo PSS, Oliveira SSC, Sangenito LS, Gonçalves DS, Seabra SH, d’Avila-Levy CM, Santos ALS. Antileishmanial Efficacy of the Calpain Inhibitor MDL28170 in Combination with Amphotericin B. TropicalMed 2022;7:29. [DOI: 10.3390/tropicalmed7020029] [Reference Citation Analysis]
19 Song P, Chen S, Tan X, Gao Y, Fu J, You Z, Wang C, Zhao Q, Pang F. Metagenomic Analysis Identifying a Rare Leishmania Infection in an Adult With AIDS. Front Cell Infect Microbiol 2021;11:764142. [PMID: 34976855 DOI: 10.3389/fcimb.2021.764142] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Mao W, Lazar N, van Tilbeurgh H, Loiseau PM, Pomel S. Minor Impact of A258D Mutation on Biochemical and Enzymatic Properties of Leishmania infantum GDP-Mannose Pyrophosphorylase. Microorganisms 2022;10:231. [DOI: 10.3390/microorganisms10020231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Mukherjee S, Das S. Role of biosensor-based devices for diagnosis of nononcological disorders. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00020-x] [Reference Citation Analysis]
22 Almeida-bezerra JW, Fonseca VJA, da Silva Mendes JW, de Lima RDP, dos Santos ATL, de Menezes SA, Portela BYM, Vandesmet LCS, Rodrigues FC, Bezerra JJL, da Silva VB, da Cruz RP, dos Santos AF, Verçosa CJ, de Vasconcelos JMPBL, Figueroa MEV, da Paz Cabral C, da Silva Nascimento GM, Rocha MI, do Nascimento MP, de Sousa Fernandes PA, da Silva FSH, Morais-braga MFB. Antileishmanial Activity of Essential Oils. Essential Oils 2022. [DOI: 10.1007/978-3-030-99476-1_13] [Reference Citation Analysis]
23 Ferraz LRM, Silva LCPBB, Souza ML, Alves LP, Sales VAW, Barbosa IDNG, Andrade MC, Santos WMD, Rolim LA, Rolim-Neto PJ. Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022;225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Lentini G, Dumoulin PC, Carter NS. Intracellular Parasites: Kinetoplastids. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00074-2] [Reference Citation Analysis]
25 de Paula Nogueira Cruz F, de Sousa CP, Lacava PT. Pipelines for Characterization of Microbial-Producing Drugs. Encyclopedia of Infection and Immunity 2022. [DOI: 10.1016/b978-0-12-818731-9.00093-8] [Reference Citation Analysis]
26 Pinheiro AC, de Souza MVN. Current leishmaniasis drug discovery. RSC Med Chem 2022;13:1029-1043. [DOI: 10.1039/d1md00362c] [Reference Citation Analysis]
27 Sarfraz M, Wang C, Sultana N, Ellahi H, Rehman MFU, Jameel M, Akhter S, Kanwal F, Tariq MI, Xue S. 2,3-Dihydroquinazolin-4(1H)-one as a New Class of Anti-Leishmanial Agents: A Combined Experimental and Computational Study. Crystals 2022;12:44. [DOI: 10.3390/cryst12010044] [Reference Citation Analysis]
28 Salazar-Villamizar ME, Escobar P. In vitro selection of ketoconazole-pentamidine-resistant Leishmania (Viannia) braziliensis strains. Exp Parasitol 2021;233:108206. [PMID: 34973293 DOI: 10.1016/j.exppara.2021.108206] [Reference Citation Analysis]
29 Bergin SA, Zhao F, Ryan AP, Müller CA, Nieduszynski CA, Zhai B, Rolling T, Hohl TM, Morio F, Scully J, Wolfe KH, Butler G. Resistance to miltefosine results from amplification of the RTA3 floppase or inactivation of flippases in Candida parapsilosis.. [DOI: 10.1101/2021.12.16.473093] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Segarra S. Nutritional Modulation of the Immune Response Mediated by Nucleotides in Canine Leishmaniosis. Microorganisms 2021;9:2601. [PMID: 34946204 DOI: 10.3390/microorganisms9122601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Staffen IV, Banhuk FW, Tomiotto-Pellissier F, da Silva Bortoleti BT, Pavanelli WR, Ayala TS, Menolli RA. Chalcone-rich extracts from Lonchocarpus cultratus roots present in vitro leishmanicidal and immunomodulatory activity. J Pharm Pharmacol 2021:rgab155. [PMID: 34791343 DOI: 10.1093/jpp/rgab155] [Reference Citation Analysis]
32 Carvalho LM, Gusmão MR, Costa AFP, de Brito RCF, Aguiar-soares RDDO, Cardoso JMDO, Reis AB, Carneiro CM, Roatt BM. Immunochemotherapy for visceral leishmaniasis: combinatorial action of Miltefosine plus LBSapMPL vaccine improves adaptative Th1 immune response with control of splenic parasitism in experimental hamster model. Parasitology. [DOI: 10.1017/s0031182021001906] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Martinez-Hernandez JE, Hammoud Z, de Sousa AM, Kramer F, Monte-Neto RLD, Maracaja-Coutinho V, Martin AJM. Network-Based Approaches Reveal Potential Therapeutic Targets for Host-Directed Antileishmanial Therapy Driving Drug Repurposing. Microbiol Spectr 2021;9:e0101821. [PMID: 34668739 DOI: 10.1128/Spectrum.01018-21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
34 Almeida-Souza F, da Silva VD, Taniwaki NN, Hardoim DJ, Mendonça Filho AR, Moreira WFF, Buarque CD, Calabrese KDS, Abreu-Silva AL. Nitric Oxide Induction in Peritoneal Macrophages by a 1,2,3-Triazole Derivative Improves Its Efficacy upon Leishmania amazonensis In Vitro Infection. J Med Chem 2021;64:12691-704. [PMID: 34427442 DOI: 10.1021/acs.jmedchem.1c00725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Kainat, Khan MA, Ali F, Faisal S, Rizwan M, Hussain Z, Zaman N, Afsheen Z, Uddin MN, Bibi N. Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci 2021;28:5157-67. [PMID: 34466093 DOI: 10.1016/j.sjbs.2021.05.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
36 Hassan AHE, Phan TN, Yoon S, Lee CJ, Jeon HR, Kim SH, No JH, Lee YS. Pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs as possible candidates against neglected tropical diseases (NTDs): identification of hit compounds towards development of potential treatment of Leishmania donovani. J Enzyme Inhib Med Chem 2021;36:1922-30. [PMID: 34425714 DOI: 10.1080/14756366.2021.1969385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Dos Reis TF, Horta MAC, Colabardini AC, Fernandes CM, Silva LP, Bastos RW, Fonseca MVL, Wang F, Martins C, Rodrigues ML, Silva Pereira C, Del Poeta M, Wong KH, Goldman GH. Screening of Chemical Libraries for New Antifungal Drugs against Aspergillus fumigatus Reveals Sphingolipids Are Involved in the Mechanism of Action of Miltefosine. mBio 2021;12:e0145821. [PMID: 34372704 DOI: 10.1128/mBio.01458-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Pomel S, Cojean S, Pons V, Cintrat JC, Nguyen L, Vacus J, Pruvost A, Barbier J, Gillet D, Loiseau PM. An adamantamine derivative as a drug candidate for the treatment of visceral leishmaniasis. J Antimicrob Chemother 2021:dkab226. [PMID: 34212184 DOI: 10.1093/jac/dkab226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 dos Reis TF, Horta MAC, Colabardini AC, Fernandes CM, Silva LP, Bastos RW, Fonseca MVDL, Wang F, Martins C, Rodrigues ML, Silva Pereira C, Del Poeta M, Wong KH, Goldman GH. Screening of chemical libraries for new antifungal drugs against Aspergillus fumigatus reveals the potential mechanism of action of miltefosine.. [DOI: 10.1101/2021.05.19.444908] [Reference Citation Analysis]
40 Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express 2021;11:69. [PMID: 33983454 DOI: 10.1186/s13568-021-01229-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
41 Jafari M, Abolmaali SS, Tamaddon AM, Zomorodian K, Sarkari BS. Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine (Lond) 2021;16:857-77. [PMID: 33890492 DOI: 10.2217/nnm-2020-0482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
42 Domínguez-Asenjo B, Gutiérrez-Corbo C, Pérez-Pertejo Y, Iborra S, Balaña-Fouce R, Reguera RM. Bioluminescent Imaging Identifies Thymus, As Overlooked Colonized Organ, in a Chronic Model of Leishmania donovani Mouse Visceral Leishmaniasis. ACS Infect Dis 2021;7:871-83. [PMID: 33739807 DOI: 10.1021/acsinfecdis.0c00864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
43 Jain S, Santana W, Dolabella SS, Santos ALS, Souto EB, Severino P. Are Nanobiosensors an Improved Solution for Diagnosis of Leishmania? Pharmaceutics 2021;13:491. [PMID: 33916812 DOI: 10.3390/pharmaceutics13040491] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
44 Levaique H, Pamlard O, Apel C, Bignon J, Arriola M, Kuhner R, Awang K, Loiseau PM, Litaudon M, Pomel S. Alkyl-Resorcinol Derivatives as Inhibitors of GDP-Mannose Pyrophosphorylase with Antileishmanial Activities. Molecules 2021;26:1551. [PMID: 33799883 DOI: 10.3390/molecules26061551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
45 Miranda VM. Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates. Reviews in Inorganic Chemistry 2021;0:000010151520200030. [DOI: 10.1515/revic-2020-0030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
46 Pappa SA, Kontou PI, Bagos PG, Braliou GG. Urine-Based Molecular Diagnostic Tests for Leishmaniasis Infection in Human and Canine Populations: A Meta-Analysis. Pathogens 2021;10:269. [PMID: 33673416 DOI: 10.3390/pathogens10030269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Mokdadi M, Abdelkrim YZ, Banroques J, Huvelle E, Oualha R, Yeter-Alat H, Guizani I, Barhoumi M, Tanner NK. The In Silico Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite Leishmania infantum and Their Analyses in Yeast. Genes (Basel) 2021;12:212. [PMID: 33535521 DOI: 10.3390/genes12020212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Vermelho AB, Mori M, Donald WA, Supuran CT. Challenges and Promises for Obtaining New Antiprotozoal Drugs: What’s Going Wrong? Topics in Medicinal Chemistry 2021. [DOI: 10.1007/7355_2021_136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Daga MK, Rohatgi I, Mishra R. Leishmaniasis. Indian J Crit Care Med 2021;25:S166-70. [PMID: 34345133 DOI: 10.5005/jp-journals-10071-23844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Carvalho LM, Ferreira FC, Gusmão MR, Costa AFP, de Brito RCF, Aguiar-soares RDDO, Reis AB, Cardoso JMDO, Carneiro CM, Roatt BM. Heterologous vaccine therapy associated with half course of Miltefosine promote activation of the proinflammatory response with control of splenic parasitism in a hamster model of visceral leishmaniasis. Current Research in Immunology 2021;2:194-201. [DOI: 10.1016/j.crimmu.2021.10.003] [Reference Citation Analysis]
51 Bazin MA, Cojean S, Pagniez F, Bernadat G, Cavé C, Ourliac-Garnier I, Nourrisson MR, Morgado C, Picot C, Leclercq O, Baratte B, Robert T, Späth GF, Rachidi N, Bach S, Loiseau PM, Le Pape P, Marchand P. In vitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L. major casein kinase 1 inhibition. Eur J Med Chem 2021;210:112956. [PMID: 33148491 DOI: 10.1016/j.ejmech.2020.112956] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]