BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nielsen GD, Larsen ST, Wolkoff P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol 2017;91:35-61. [PMID: 27209488 DOI: 10.1007/s00204-016-1733-8] [Cited by in Crossref: 111] [Cited by in F6Publishing: 116] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Tan Y, Sun L, Wang G, Zhang R, Hou J, Zhang R, Zhao W. A two-step nonthermal plasma method to fabricate Ag/N- doped TiO2/CNTs for formaldehyde removal under visible light irradiation. Journal of Cleaner Production 2022;370:133507. [DOI: 10.1016/j.jclepro.2022.133507] [Reference Citation Analysis]
2 Tang Y, Gong J, Gou Y, Wang H, Yu L. The CeO2–TiO2 composite material for improving response speed of detecting low-concentration formaldehyde. Appl Nanosci. [DOI: 10.1007/s13204-022-02607-2] [Reference Citation Analysis]
3 Yuan C, Pu J, Fu D, Min Y, Wang L, Liu J. UV–vis spectroscopic detection of formaldehyde and its analogs: A convenient and sensitive methodology. Journal of Hazardous Materials 2022;438:129457. [DOI: 10.1016/j.jhazmat.2022.129457] [Reference Citation Analysis]
4 Xu X, Yang E, Chen Y. Progress in the Study of Optical Probes for the Detection of Formaldehyde. Crit Rev Anal Chem 2022;:1-27. [PMID: 35939357 DOI: 10.1080/10408347.2022.2107870] [Reference Citation Analysis]
5 Zhu Z, Zhang E, Tu Y, Ye M, Chen N. An Eco-Friendly Wood Adhesive Consisting of Soybean Protein and Cardanol-Based Epoxy for Wood Based Composites. Polymers 2022;14:2831. [DOI: 10.3390/polym14142831] [Reference Citation Analysis]
6 Xiang C, Chen T, Zhao Y, Sun J, Jiang K, Li Y, Zhu X, Zhang X, Zhang N, Guo R. Facile Hydrothermal Synthesis of SnO2 Nanoflowers for Low-Concentration Formaldehyde Detection. Nanomaterials 2022;12:2133. [DOI: 10.3390/nano12132133] [Reference Citation Analysis]
7 Dai Z, Yu J, Si Y. Gradient Porous Structured MnO2-Nonwoven Composite: A Binder-Free Polymeric Air Filter for Effective Room-Temperature Formaldehyde Removal. Polymers (Basel) 2022;14:2504. [PMID: 35746080 DOI: 10.3390/polym14122504] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Şahinöz M, Aruntaş HY, Gürü M. Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. Case Studies in Construction Materials 2022;16:e01013. [DOI: 10.1016/j.cscm.2022.e01013] [Reference Citation Analysis]
9 Peng W, Yue X, Chen H, Ma NL, Quan Z, Yu Q, Wei Z, Guan R, Lam SS, Rinklebe J, Zhang D, Zhang B, Bolan N, Kirkham M, Sonne C. A Review of Plants Formaldehyde Metabolism: Implications for Hazardous Emissions and Phytoremediation. Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.129304] [Reference Citation Analysis]
10 Tian M, Xia P, Yan L, Gou X, Giesy JP, Dai J, Yu H, Zhang X. Toxicological Mechanism of Individual Susceptibility to Formaldehyde-Induced Respiratory Effects. Environ Sci Technol 2022;56:6511-24. [PMID: 35438505 DOI: 10.1021/acs.est.1c07945] [Reference Citation Analysis]
11 Nagase M, Nagase T, Tokumine J, Saito K, Sunami E, Shiokawa Y, Matsumura G. Formalin-free soft embalming of human cadavers using N-vinyl-2-pyrrolidone: perspectives for cadaver surgical training and medical device development. Anat Sci Int 2022. [PMID: 35460067 DOI: 10.1007/s12565-022-00664-9] [Reference Citation Analysis]
12 Banerjee P, Ulker OC. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol Mech Methods 2022;:1-18. [PMID: 35287538 DOI: 10.1080/15376516.2022.2053623] [Reference Citation Analysis]
13 Güneş G, Yalçin N, Çolaklar H. Investigation of indoor air quality in university libraries in terms of gaseous and particulate pollutants in Bartin, Turkey. Environ Monit Assess 2022;194:200. [PMID: 35182210 DOI: 10.1007/s10661-022-09818-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Li X, Li H, Huang Y, Cao J, Huang T, Li R, Zhang Q, Lee SC, Ho W. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2-x-OV surface. J Hazard Mater 2022;424:127217. [PMID: 34879541 DOI: 10.1016/j.jhazmat.2021.127217] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
15 Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. J Hazard Mater 2022;424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
16 Zhang J, Lv F, Li Z, Jiang G, Tan M, Yuan M, Zhang Q, Cao Y, Zheng H, Zhang L, Tang C, Fu W, Liu C, Liu K, Gu L, Jiang J, Zhang G, Guo S. Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity. Adv Mater 2022;34:e2105276. [PMID: 34738668 DOI: 10.1002/adma.202105276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Sharma G, Annadate S, Sinha B. Will open waste burning become India's largest air pollution source? Environ Pollut 2022;292:118310. [PMID: 34626708 DOI: 10.1016/j.envpol.2021.118310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Tan W, Chen Q, Wang R, Wang Z, Zhang H, Wu Y. Research on the on-line determination of formaldehyde gas by the gas–liquid phase chemiluminescence method. RSC Adv 2022;12:23956-62. [DOI: 10.1039/d2ra03175b] [Reference Citation Analysis]
19 Hu D, Tobon Y, Agostini A, Grosselin B, Chen Y, Robin C, Yahyaoui A, Colin P, Mellouki A, Daële V. Diurnal variation and potential sources of indoor formaldehyde at elementary school, high school and university in the Centre Val de Loire region of France. Sci Total Environ 2021;811:152271. [PMID: 34902409 DOI: 10.1016/j.scitotenv.2021.152271] [Reference Citation Analysis]
20 Ghazi A. A Call for Change. Can 3D Printing Replace Cadavers for Surgical Training? Urol Clin North Am 2022;49:39-56. [PMID: 34776053 DOI: 10.1016/j.ucl.2021.08.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wang T, Wang H, Xia P, Xue S, Yang G, Li H, Li Z, Jiang X, Xing X. PVA-SM microstructure enhanced ratiometric fluorescence probe for formaldehyde detection in solution and gas. Opt Lett 2021;46:5759-62. [PMID: 34780455 DOI: 10.1364/OL.441296] [Reference Citation Analysis]
22 Elcin E, Ayaydin F, Öktem HA. Formaldehyde biosensing in air using fluorescent bacterial bioreporter cells. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2021.1998474] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhu X, Zhang X, Chang X, Li J, Pan L, Jiang Y, Gao W, Gao C, Sun S. Metal-organic framework-derived porous SnO2 nanosheets with grain sizes comparable to Debye length for formaldehyde detection with high response and low detection limit. Sensors and Actuators B: Chemical 2021;347:130599. [DOI: 10.1016/j.snb.2021.130599] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
24 Cammalleri V, Pocino RN, Marotta D, Protano C, Sinibaldi F, Simonazzi S, Petyx M, Iavicoli S, Vitali M. Occupational scenarios and exposure assessment to formaldehyde: A systematic review. Indoor Air 2021. [PMID: 34708443 DOI: 10.1111/ina.12949] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Villanueva F, Lara S, Notario A, Amo-Salas M, Cabañas B. Formaldehyde, acrolein and other carbonyls in dwellings of university students. Levels and source characterization. Chemosphere 2022;288:132429. [PMID: 34606894 DOI: 10.1016/j.chemosphere.2021.132429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Nasriddinov A, Platonov V, Garshev A, Rumyantseva M. Low Temperature HCHO Detection by SnO2/TiO2@Au and SnO2/TiO2@Pt: Understanding by In-Situ DRIFT Spectroscopy. Nanomaterials (Basel) 2021;11:2049. [PMID: 34443880 DOI: 10.3390/nano11082049] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
27 Zhou W, Ye Q, Shi SQ, Fang Z, Gao Q, Li J. A strong magnesium oxychloride cement wood adhesive via organic–inorganic hybrid. Construction and Building Materials 2021;297:123776. [DOI: 10.1016/j.conbuildmat.2021.123776] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
28 Ghelli F, Bellisario V, Squillacioti G, Panizzolo M, Santovito A, Bono R. Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics 2021;9:178. [PMID: 34437496 DOI: 10.3390/toxics9080178] [Reference Citation Analysis]
29 Yuan Z, Yang C, Meng F. Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review. Chemosensors 2021;9:179. [DOI: 10.3390/chemosensors9070179] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
30 Tang Y, Zhang M, Nawaz SA, Tian X, Wang H, Wang J. TiO2hierarchical nano blooming-flower decorated by Pt for formaldehyde detection. Nanotechnology 2021;32. [PMID: 34038880 DOI: 10.1088/1361-6528/ac056c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Dugheri S, Massi D, Mucci N, Marrubini G, Cappelli G, Trevisani L, Bonferoni MC, Arcangeli G. An Upgrade of Apparatus and Measurement Systems for Generation of Gaseous Formaldehyde: A Review. Crit Rev Anal Chem 2021;:1-15. [PMID: 34096409 DOI: 10.1080/10408347.2021.1913090] [Reference Citation Analysis]
32 Ghelli F, Cocchi E, Buglisi M, Squillacioti G, Bellisario V, Bono R, Santovito A. The role of phase I, phase II, and DNA-repair gene polymorphisms in the damage induced by formaldehyde in pathologists. Sci Rep 2021;11:10507. [PMID: 34006906 DOI: 10.1038/s41598-021-89833-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Li YW, Ma WL. Photocatalytic oxidation technology for indoor air pollutants elimination: A review. Chemosphere 2021;280:130667. [PMID: 34162075 DOI: 10.1016/j.chemosphere.2021.130667] [Reference Citation Analysis]
34 Bandehali S, Miri T, Onyeaka H, Kumar P. Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere 2021;12:473. [DOI: 10.3390/atmos12040473] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
35 Huang X, Tang Z, Tan Z, Sheng S, Zhao Q. Hierarchical In2O3 nanostructures for improved formaldehyde: sensing performance. J Mater Sci: Mater Electron 2021;32:11857-64. [DOI: 10.1007/s10854-021-05815-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Liu H, Feng Y, Cao X, Luo B, Liu M. Chitin Nanocrystals as an Eco-friendly and Strong Anisotropic Adhesive. ACS Appl Mater Interfaces 2021;13:11356-68. [PMID: 33634690 DOI: 10.1021/acsami.1c02000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
37 Gentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, Greene T. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol 2020;50:885-918. [PMID: 33538218 DOI: 10.1080/10408444.2020.1854678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Kim YH, Park J. Development of a Simple and Powerful Analytical Method for Formaldehyde Detection and Quantitation in Blood Samples. J Anal Methods Chem 2020;2020:8810726. [PMID: 33457038 DOI: 10.1155/2020/8810726] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Canha N, Teixeira C, Figueira M, Correia C. How Is Indoor Air Quality during Sleep? A Review of Field Studies. Atmosphere 2021;12:110. [DOI: 10.3390/atmos12010110] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
40 Huang C, Adimi S, Liu D, Guo H, Thomas T, Attfield JP, Ruan S, Qu F, Yang M. Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing. J Mater Chem A 2021;9:19840-6. [DOI: 10.1039/d1ta02433g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
41 Liu X, Wang H, Yang R, Liu D, Wan J, Hao S, Zhang Q, Chen X. Pd-Loaded In 2 O 3 Hollow Spheres with Enhanced Formaldehyde Sensing at Low Temperature. NANO 2021;16:2150006. [DOI: 10.1142/s1793292021500065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Liao C, Shi J, Zhang M, Dalapati R, Tian Q, Chen S, Wang C, Zang L. Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application. Mater Adv 2021;2:6213-45. [DOI: 10.1039/d1ma00341k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
43 Qin H, Wu T, Du C, Ren L, Chen L, Weng D, Wang J. Self-assembled NaY/MnO2-based textiles for indoor formaldehyde removal at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;609:125674. [DOI: 10.1016/j.colsurfa.2020.125674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
44 Luo L, Yao W, Yuan R, Shi W, Jin X, Hu J, Jiang G. Synthesis of submicron-sized carbon-doped TiO 2 for photodegradation of formaldehyde from wood-based panels. IOP Conf Ser : Mater Sci Eng 2021;1040:012001. [DOI: 10.1088/1757-899x/1040/1/012001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yang S, Chen Z, Cheng Y, Liu T, Lihong Yin, Pu Y, Liang G. Environmental toxicology wars: Organ-on-a-chip for assessing the toxicity of environmental pollutants. Environmental Pollution 2021;268:115861. [DOI: 10.1016/j.envpol.2020.115861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ge P, Zhang X, Yang YQ, Lv MQ, Zhou DX. Long-term exposure to formaldehyde induced down-regulation of SPO11 in rats. Inhal Toxicol 2021;33:8-17. [PMID: 33322957 DOI: 10.1080/08958378.2020.1859652] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Dugheri S, Massi D, Mucci N, Berti N, Cappelli G, Arcangeli G. How improvements in monitoring and safety practices lowered airborne formaldehyde concentrations at an Italian university hospital: a summary of 20 years of experience. Arh Hig Rada Toksikol 2020;71:178-89. [PMID: 33074166 DOI: 10.2478/aiht-2020-71-3406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Gonzalez-Rivera JC, Sherman MW, Wang DS, Chuvalo-Abraham JCL, Hildebrandt Ruiz L, Contreras LM. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci Rep 2020;10:16545. [PMID: 33024153 DOI: 10.1038/s41598-020-73376-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
49 Wang BJ, Ma SY, Pei ST, Xu XL, Cao PF, Zhang JL, Zhang R, Xu XH, Han T. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sensors and Actuators B: Chemical 2020;321:128560. [DOI: 10.1016/j.snb.2020.128560] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 12.5] [Reference Citation Analysis]
50 Chen T, Wu Z, Hu X, Aladejana JT, Niu M, Liu Z, Wei Q, Peng X, Xie Y, Wu B. Constructing hydrophobic interfaces in aluminophosphate adhesives with reduced graphene oxide to improve the performance of wood-based boards. Composites Part B: Engineering 2020;198:108168. [DOI: 10.1016/j.compositesb.2020.108168] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Saini J, Dutta M, Marques G. Indoor air quality prediction systems for smart environments: A systematic review. AIS 2020;12:433-53. [DOI: 10.3233/ais-200574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
52 Padilla CR, Spiker CM, Beltran TA, Berry-Cabán CS, Choi YS. Normative formaldehyde-hemoglobin adduct levels among the US Population: Analysis of the 2013-2016 National Health and Nutrition Examination Survey. Clin Biochem 2020;86:61-4. [PMID: 32905809 DOI: 10.1016/j.clinbiochem.2020.08.013] [Reference Citation Analysis]
53 Russell HS, Bonomaully J, Bossi R, Hofmann MEG, Knap HC, Pernov JB, Veld MI‘, Johnson MS. Novel Materials for Combined Nitrogen Dioxide and Formaldehyde Pollution Control under Ambient Conditions. Catalysts 2020;10:1040. [DOI: 10.3390/catal10091040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
54 Diao W, Cai H, Wang L, Rao X, Zhang Y. Efficient photocatalytic degradation of gas‐phase formaldehyde by Pt/TiO 2 nanowires in a continuous flow reactor. ChemCatChem 2020;12:5420-9. [DOI: 10.1002/cctc.202000837] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
55 Jalali M, Moghadam SR, Baziar M, Hesam G, Moradpour Z, Zakeri HR. Occupational exposure to formaldehyde, lifetime cancer probability, and hazard quotient in pathology lab employees in Iran: a quantitative risk assessment. Environ Sci Pollut Res Int 2021;28:1878-88. [PMID: 32860187 DOI: 10.1007/s11356-020-10627-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
56 Rahman T, Faisal AM, Khanam T, Shekhar HU. Recurrent Indoor Environmental Pollution and Its Impact on Health and Oxidative Stress of the Textile Workers in Bangladesh. Environ Health Insights 2020;14:1178630220938393. [PMID: 32843838 DOI: 10.1177/1178630220938393] [Reference Citation Analysis]
57 Wu Y, Duan J, Li B, Liu H, Chen M. Exposure to formaldehyde at low temperatures aggravates allergic asthma involved in transient receptor potential ion channel. Environ Toxicol Pharmacol 2020;80:103469. [PMID: 32798733 DOI: 10.1016/j.etap.2020.103469] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Cai T, Zhang P, Shen X, Huang E, Shen X, Shi J, Wang Z, Sun Q. Synthesis of Pt-Loaded NiFe-LDH Nanosheets on Wood Veneer for Efficient Gaseous Formaldehyde Degradation. ACS Appl Mater Interfaces 2020;12:37147-54. [DOI: 10.1021/acsami.0c09016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
59 Mariuta D, Govindaraji A, Colin S, Barrot C, Le Calvé S, Korvink JG, Baldas L, Brandner JJ. Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. Micromachines (Basel) 2020;11:E673. [PMID: 32664311 DOI: 10.3390/mi11070673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
60 Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020;94:1787-877. [PMID: 32542409 DOI: 10.1007/s00204-020-02733-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
61 Wang L, Sheng Q, Zhang Y, Xu J, Zhang H, Zhu Z. Tolerance of fifteen hydroponic ornamental plant species to formaldehyde stress. Environ Pollut 2020;265:115003. [PMID: 32806450 DOI: 10.1016/j.envpol.2020.115003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
62 Alkoussa S, Hulo S, Courcot D, Billet S, Martin PJ. Extracellular vesicles as actors in the air pollution related cardiopulmonary diseases. Critical Reviews in Toxicology 2020;50:402-23. [DOI: 10.1080/10408444.2020.1763252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Nikolic P, Mudgil P, Whitehall J. The in vitro antibacterial effect of permethrin and formaldehyde on Staphylococcus aureus. Microbiologyopen 2020;9:e1054. [PMID: 32383305 DOI: 10.1002/mbo3.1054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
64 Xue S, Jiang XF, Zhang G, Wang H, Li Z, Hu X, Chen M, Wang T, Luo A, Ho HP, He S, Xing X. Surface Plasmon-Enhanced Optical Formaldehyde Sensor Based on CdSe@ZnS Quantum Dots. ACS Sens 2020;5:1002-9. [PMID: 32181650 DOI: 10.1021/acssensors.9b02462] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
65 Coloma L, Cabello R, González C, Quicios C, Bueno G, García JV, Arribas AB, Clascá F. Cadaveric Models for Renal Transplant Surgery Education: a Comprehensive Review. Curr Urol Rep 2020;21:10. [PMID: 32166557 DOI: 10.1007/s11934-020-0961-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
66 Wen Y, Leng J, Shen X, Han G, Sun L, Yu F. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review. Int J Environ Res Public Health 2020;17:E1084. [PMID: 32046319 DOI: 10.3390/ijerph17031084] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
67 Ahmad I, Zhou Z, Li H, Zang S. Crafting CdTe/CdS QDs surface for the selective recognition of formaldehyde gas via ratiometric contrivance. Sensors and Actuators B: Chemical 2020;304:127379. [DOI: 10.1016/j.snb.2019.127379] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
68 Jiang T, Wang X, Chen J, Mai Y, Liao B, Hu W. Hierarchical Ni/Co-LDHs catalyst for catalytic oxidation of indoor formaldehyde at ambient temperature. J Mater Sci: Mater Electron 2020;31:3500-9. [DOI: 10.1007/s10854-020-02898-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
69 Sahrin NT, Nawaz R, Fai Kait C, Lee SL, Wirzal MDH. Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil. Nanomaterials (Basel) 2020;10:E128. [PMID: 31936704 DOI: 10.3390/nano10010128] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
70 Hussain M, Song X, Shah S, Hao C. TD-DFT insights into the sensing potential of the luminescent covalent organic framework for indoor pollutant formaldehyde. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;224:117432. [DOI: 10.1016/j.saa.2019.117432] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
71 Zheng P, Zeng Q, Lin Q, Fan M, Zhou J, Rao J, Chen N. Investigation of an ambient temperature-curable soy-based adhesive for wood composites. International Journal of Adhesion and Adhesives 2019;95:102429. [DOI: 10.1016/j.ijadhadh.2019.102429] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
72 Tang G, Chen X, Li X, Wang Y, Yang Y, Wang Y, Gao W, Wang Y, Tao M, Wang Y. Decreased gaseous carbonyls in the North China plain from 2004 to 2017 and future control measures. Atmospheric Environment 2019;218:117015. [DOI: 10.1016/j.atmosenv.2019.117015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
73 Mugherli L, Lety-Stefanska A, Landreau N, Tomasi RF, Baroud CN. Quantifying the sol-gel process and detecting toxic gas in an array of anchored microfluidic droplets. Lab Chip 2020;20:236-43. [PMID: 31746881 DOI: 10.1039/c9lc00750d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Zhu S, Wang J, Nie L. Progress of Catalytic Oxidation of Formaldehyde over Manganese Oxides. ChemistrySelect 2019;4:12085-98. [DOI: 10.1002/slct.201902701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
75 Consolazio N, Lowry GV, Karamalidis AK. Hydrolysis and degradation of dazomet with pyrite: Implications for persistence in produced waters in the Marcellus Shale. Applied Geochemistry 2019;108:104383. [DOI: 10.1016/j.apgeochem.2019.104383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
76 Li N, Fan Y, Shi Y, Xiang Q, Wang X, Xu J. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism. Sensors and Actuators B: Chemical 2019;294:106-15. [DOI: 10.1016/j.snb.2019.04.061] [Cited by in Crossref: 82] [Cited by in F6Publishing: 100] [Article Influence: 27.3] [Reference Citation Analysis]
77 [DOI: 10.1109/irmmw-thz.2019.8874534] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
78 Nikolic P, Mudgil P, Whitehall J. Formaldehyde as an alternative to antibiotics for treatment of refractory impetigo and other infectious skin diseases. Expert Rev Anti Infect Ther 2019;17:681-7. [PMID: 31393185 DOI: 10.1080/14787210.2019.1654376] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Marques G, Pitarma R. mHealth: Indoor Environmental Quality Measuring System for Enhanced Health and Well-Being Based on Internet of Things. JSAN 2019;8:43. [DOI: 10.3390/jsan8030043] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
80 Chen W, Chen J, Zhang J, Luo R, Yang H, Wang G, Wang R. A facile synthesis of titanium dioxide/reduced graphene oxide composite with high photocatalytic activity for removal of gaseous formaldehyde. Mater Res Express 2019;6:105503. [DOI: 10.1088/2053-1591/ab347c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
81 Wang C, Zou X, Liu H, Chen T, Suib SL, Chen D, Xie J, Li M, Sun F. A highly efficient catalyst of palygorskite-supported manganese oxide for formaldehyde oxidation at ambient and low temperature: Performance, mechanism and reaction kinetics. Applied Surface Science 2019;486:420-30. [DOI: 10.1016/j.apsusc.2019.04.257] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
82 Nagase M, Kimoto Y, Sunami E, Matsumura G. A new human cadaver model for laparoscopic training using N-vinyl-2-pyrrolidone: a feasibility study. Anat Sci Int 2020;95:156-64. [DOI: 10.1007/s12565-019-00494-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
83 Nasriddinov A, Rumyantseva M, Marikutsa A, Gaskov A, Lee JH, Kim JH, Kim JY, Kim SS, Kim HW. Sub-ppm Formaldehyde Detection by n-n TiO2@SnO2 Nanocomposites. Sensors (Basel) 2019;19:E3182. [PMID: 31331010 DOI: 10.3390/s19143182] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
84 Maruyama K, Yokoi H, Nagase M, Yoshida H, Noguchi A, Matsumura G, Saito K, Shiokawa Y. Usefulness of N-vinyl-2-pyrrolidone Embalming for Endoscopic Transnasal Skull Base Approach in Cadaver Dissection. Neurol Med Chir (Tokyo) 2019;59:379-83. [PMID: 31270286 DOI: 10.2176/nmc.oa.2019-0069] [Reference Citation Analysis]
85 Stenson J, Ishaq SL, Laguerre A, Loia A, Maccrone G, Mugabo I, Northcutt D, Riggio M, Barbosa A, Gall ET, Van Den Wymelenberg K. Monitored Indoor Environmental Quality of a Mass Timber Office Building: A Case Study. Buildings 2019;9:142. [DOI: 10.3390/buildings9060142] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
86 Wang K, Wang T, Xu J, Zhu Y, Jian L, Au W, Xia Z. Determination of benchmark dose based on adduct and micronucleus formations in formaldehyde-exposed workers. International Journal of Hygiene and Environmental Health 2019;222:738-43. [DOI: 10.1016/j.ijheh.2019.05.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
87 Morin J, Gandolfo A, Temime-roussel B, Strekowski R, Brochard G, Bergé V, Gligorovski S, Wortham H. Application of a mineral binder to reduce VOC emissions from indoor photocatalytic paints. Building and Environment 2019;156:225-32. [DOI: 10.1016/j.buildenv.2019.04.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
88 Chen N, Lin Q, Zheng P, Rao J, Zeng Q, Sun J. A sustainable bio-based adhesive derived from defatted soy flour and epichlorohydrin. Wood Sci Technol 2019;53:801-17. [DOI: 10.1007/s00226-019-01102-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
89 Andersen ME, Gentry PR, Swenberg JA, Mundt KA, White KW, Thompson C, Bus J, Sherman JH, Greim H, Bolt H, Marsh GM, Checkoway H, Coggon D, Clewell HJ 3rd. Considerations for refining the risk assessment process for formaldehyde: Results from an interdisciplinary workshop. Regul Toxicol Pharmacol 2019;106:210-23. [PMID: 31059732 DOI: 10.1016/j.yrtph.2019.04.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
90 Yang F, Gu C, Liu B, Hou C, Zhou K. Pt-activated Ce4La6O17 nanocomposites for formaldehyde and carbon monoxide sensor at low operating temperature. Journal of Alloys and Compounds 2019;787:173-9. [DOI: 10.1016/j.jallcom.2019.02.066] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
91 Nishikawa S, Matsui Y, Matsushita T, Shirasaki N. Assessment of indirect inhalation exposure to formaldehyde evaporated from water. Regul Toxicol Pharmacol 2019;106:43-9. [PMID: 31026539 DOI: 10.1016/j.yrtph.2019.04.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
92 Tsai WT. An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. Rev Environ Health 2019;34:81-9. [PMID: 30854833 DOI: 10.1515/reveh-2018-0046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
93 Leng J, Liu CW, Hartwell HJ, Yu R, Lai Y, Bodnar WM, Lu K, Swenberg JA. Evaluation of inhaled low-dose formaldehyde-induced DNA adducts and DNA-protein cross-links by liquid chromatography-tandem mass spectrometry. Arch Toxicol 2019;93:763-73. [PMID: 30701286 DOI: 10.1007/s00204-019-02393-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
94 Fu Y, Chen L, Guo X, Wang H. Determination of formaldehyde in single cell by capillary electrophoresis with LIF detection. ELECTROPHORESIS 2019;40:1027-33. [DOI: 10.1002/elps.201800399] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
95 Miyamoto K, Grigsby W, Tohmura S. Using Renewables in Panelboard Resins to Influence Volatile Organic Compound Emissions from Panels. Journal of Wood Chemistry and Technology 2019;39:166-77. [DOI: 10.1080/02773813.2018.1533977] [Reference Citation Analysis]
96 Zhao Y, Zou X, Chen H, Chu X, Li G. Tailoring energy level and surface basicity of metal oxide semiconductors by rare-earth incorporation for high-performance formaldehyde detection. Inorg Chem Front 2019;6:1767-74. [DOI: 10.1039/c9qi00381a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
97 Liang H, Zhao S, Liu K, Su Y. Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants. Journal of Environmental Science and Health, Part A 2019;54:193-201. [DOI: 10.1080/10934529.2018.1544477] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
98 Hussain M, Song X, Zhao J, Luo Y, Hao C. Impact of electronically excited state hydrogen bonding on luminescent covalent organic framework: a TD-DFT investigation. Molecular Physics 2019;117:823-30. [DOI: 10.1080/00268976.2018.1543901] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 Liu F, Rong S, Zhang P, Gao L. One-step synthesis of nanocarbon-decorated MnO 2 with superior activity for indoor formaldehyde removal at room temperature. Applied Catalysis B: Environmental 2018;235:158-67. [DOI: 10.1016/j.apcatb.2018.04.078] [Cited by in Crossref: 62] [Cited by in F6Publishing: 75] [Article Influence: 15.5] [Reference Citation Analysis]
100 Chen W, Han J, Wang X, Liu X, Liu F, Wang F, Yu RQ, Jiang JH. Aggregation-Induced Emission-Based Fluorescence Probe for Fast and Sensitive Imaging of Formaldehyde in Living Cells. ACS Omega 2018;3:14417-22. [PMID: 30411068 DOI: 10.1021/acsomega.8b01660] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
101 Scheepers PTJ, Graumans MHF, Beckmann G, van Dael M, Anzion RBM, Melissen M, Pinckaers N, van Wel L, de Werdt LMA, Gelsing V, van Linge A. Changes in Work Practices for Safe Use of Formaldehyde in a University-Based Anatomy Teaching and Research Facility. Int J Environ Res Public Health 2018;15:E2049. [PMID: 30235815 DOI: 10.3390/ijerph15092049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
102 Liu J, Dai X, Li X, Jia S, Pei J, Sun Y, Lai D, Shen X, Sun H, Yin H, Huang K, Tan H, Gao Y, Jian Y. Indoor air quality and occupants' ventilation habits in China: Seasonal measurement and long-term monitoring. Building and Environment 2018;142:119-29. [DOI: 10.1016/j.buildenv.2018.06.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
103 Dugheri S, Bonari A, Pompilio I, Colpo M, Mucci N, Arcangeli G. An Integrated Air Monitoring Approach for Assessment of Formaldehyde in the Workplace. Saf Health Work 2018;9:479-85. [PMID: 30559999 DOI: 10.1016/j.shaw.2018.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
104 Vitoux M, Kessal K, Baudouin C, Laprévote O, Melik Parsadaniantz S, Achard S, Brignole-baudouin F. Formaldehyde Gas Exposure Increases Inflammation in an In Vitro Model of Dry Eye. Toxicological Sciences 2018;165:108-17. [DOI: 10.1093/toxsci/kfy125] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
105 Liang H, Zhao S, Su Y. Self-Enhancement Effect and Mechanism of Potted Chlorophytum comosum on Formaldehyde Removal from Air. Int J Environ Res 2018;12:337-46. [DOI: 10.1007/s41742-018-0096-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
106 Chen T, Wu Z, Wang XA, Wang W, Huang D, Wei Q, Wu B, Xie Y. Hierarchical Lamellar Aluminophosphate Materials with Porosity as Ecofriendly Inorganic Adhesive for Wood-Based Boards. ACS Sustainable Chem Eng 2018;6:6273-80. [DOI: 10.1021/acssuschemeng.8b00078] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
107 Oballe HJR, Muniz FWMG, Bueno CC, Klein IP, Carrard VC, Rösing CK, Gaio EJ. Spontaneous alveolar bone loss after 4NQO exposure in Wistar rats. Arch Oral Biol 2018;89:44-8. [PMID: 29448184 DOI: 10.1016/j.archoralbio.2018.02.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
108 Dai X, Liu J, Yin Y, Song X, Jia S. Modeling and controlling indoor formaldehyde concentrations in apartments: On-site investigation in all climate zones of China. Building and Environment 2018;127:98-106. [DOI: 10.1016/j.buildenv.2017.10.036] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
109 Haizuka Y, Nagase M, Takashino S, Kobayashi Y, Fujikura Y, Matsumura G. A new substitute for formalin: Application to embalming cadavers. Clin Anat 2018;31:90-8. [PMID: 29114928 DOI: 10.1002/ca.23011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
110 Mundt KA, Gentry PR, Dell LD, Rodricks JV, Boffetta P. Six years after the NRC review of EPA's Draft IRIS Toxicological Review of Formaldehyde: Regulatory implications of new science in evaluating formaldehyde leukemogenicity. Regul Toxicol Pharmacol 2018;92:472-90. [PMID: 29158043 DOI: 10.1016/j.yrtph.2017.11.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
111 Sheehan P, Singhal A, Bogen KT, Macintosh D, Kalmes RM, Mccarthy J. Potential Exposure and Cancer Risk from Formaldehyde Emissions from Installed Chinese Manufactured Laminate Flooring: Potential Exposure and Cancer Risk from Formaldehyde Emissions. Risk Analysis 2018;38:1128-42. [DOI: 10.1111/risa.12926] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
112 Nielsen GD, Wolkoff P. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach. Regulatory Toxicology and Pharmacology 2017;90:308-17. [DOI: 10.1016/j.yrtph.2017.09.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
113 Mocho P, Desauziers V, Plaisance H, Sauvat N. Improvement of the performance of a simple box model using CFD modeling to predict indoor air formaldehyde concentration. Building and Environment 2017;124:450-9. [DOI: 10.1016/j.buildenv.2017.08.033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
114 Huang S, Wei W, Weschler LB, Salthammer T, Kan H, Bu Z, Zhang Y. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. Science of The Total Environment 2017;590-591:394-405. [DOI: 10.1016/j.scitotenv.2017.02.187] [Cited by in Crossref: 62] [Cited by in F6Publishing: 71] [Article Influence: 12.4] [Reference Citation Analysis]
115 Sarot E, Carillo-baraglioli M, Duranthon F, Péquignot A, Pyronnet S. Assessment of alternatives to environmental toxic formalin for DNA conservation in biological specimens. Environ Sci Pollut Res 2017;24:16985-93. [DOI: 10.1007/s11356-017-9349-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
116 Chen YY, Sung FC, Chen ML, Mao IF, Lu CY. Indoor Air Quality in the Metro System in North Taiwan. Int J Environ Res Public Health 2016;13:E1200. [PMID: 27918460 DOI: 10.3390/ijerph13121200] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]