BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Upreti M, Jamshidi-Parsian A, Apana S, Berridge M, Fologea DA, Koonce NA, Henry RL, Griffin RJ. Radiation-induced galectin-1 by endothelial cells: a promising molecular target for preferential drug delivery to the tumor vasculature. J Mol Med (Berl) 2013;91:497-506. [PMID: 23090010 DOI: 10.1007/s00109-012-0965-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
Number Citing Articles
1 Laderach DJ, Compagno D. Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021;13:4529. [PMID: 34572756 DOI: 10.3390/cancers13184529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, Chen J, Dings RPM, Griffin RJ. Enhanced Photothermal Treatment Efficacy and Normal Tissue Protection via Vascular Targeted Gold Nanocages. Nanotheranostics 2019;3:145-55. [PMID: 31008023 DOI: 10.7150/ntno.32395] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
3 Dings RPM, Miller MC, Griffin RJ, Mayo KH. Galectins as Molecular Targets for Therapeutic Intervention. Int J Mol Sci 2018;19:E905. [PMID: 29562695 DOI: 10.3390/ijms19030905] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 14.3] [Reference Citation Analysis]
4 Miller MA, Chandra R, Cuccarese MF, Pfirschke C, Engblom C, Stapleton S, Adhikary U, Kohler RH, Mohan JF, Pittet MJ, Weissleder R. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med 2017;9:eaal0225. [PMID: 28566423 DOI: 10.1126/scitranslmed.aal0225] [Cited by in Crossref: 130] [Cited by in F6Publishing: 138] [Article Influence: 32.5] [Reference Citation Analysis]
5 Wang F, Lv P, Gu Y, Li L, Ge X, Guo G. Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway. Oncotarget 2017;8:25097-106. [PMID: 28212576 DOI: 10.18632/oncotarget.15341] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
6 Batzke K, Büchel G, Hansen W, Schramm A. TrkB-Target Galectin-1 Impairs Immune Activation and Radiation Responses in Neuroblastoma: Implications for Tumour Therapy. Int J Mol Sci 2018;19:E718. [PMID: 29498681 DOI: 10.3390/ijms19030718] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
7 Upreti M, Jyoti A, Johnson SE, Swindell EP, Napier D, Sethi P, Chan R, Feddock JM, Weiss HL, O'Halloran TV, Evers BM. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer. Oncotarget 2016;7:41559-74. [PMID: 27223428 DOI: 10.18632/oncotarget.9490] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
8 Jenkins SV, Nima ZA, Vang KB, Kannarpady G, Nedosekin DA, Zharov VP, Griffin RJ, Biris AS, Dings RPM. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis Oncol 2017;1:27. [PMID: 29872709 DOI: 10.1038/s41698-017-0030-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
9 Jenkins SV, Nedosekin DA, Miller EK, Zharov VP, Dings RPM, Chen J, Griffin RJ. Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int J Hyperthermia 2018;34:19-29. [PMID: 28540812 DOI: 10.1080/02656736.2017.1317845] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
10 Chan R, Sethi P, Jyoti A, McGarry R, Upreti M. Investigating the Radioresistant Properties of Lung Cancer Stem Cells in the Context of the Tumor Microenvironment. Radiat Res 2016;185:169-81. [PMID: 26836231 DOI: 10.1667/RR14285.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
11 Sethi P, Jyoti A, Swindell EP, Chan R, Langner UW, Feddock JM, Nagarajan R, O'Halloran TV, Upreti M. 3D tumor tissue analogs and their orthotopic implants for understanding tumor-targeting of microenvironment-responsive nanosized chemotherapy and radiation. Nanomedicine 2015;11:2013-23. [PMID: 26282381 DOI: 10.1016/j.nano.2015.07.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
12 Kuo P, Bratman SV, Shultz DB, von Eyben R, Chan C, Wang Z, Say C, Gupta A, Loo BW Jr, Giaccia AJ, Koong AC, Diehn M, Le QT. Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res 2014;20:5558-69. [PMID: 25189484 DOI: 10.1158/1078-0432.CCR-14-1138] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 5.4] [Reference Citation Analysis]
13 Kuo P, Le QT. Galectin-1 links tumor hypoxia and radiotherapy. Glycobiology 2014;24:921-5. [PMID: 24973253 DOI: 10.1093/glycob/cwu062] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
14 Upreti M, Jyoti A, Sethi P. Tumor microenvironment and nanotherapeutics. Transl Cancer Res 2013;2:309-19. [PMID: 24634853 DOI: 10.3978/j.issn.2218-676X.2013.08.11] [Cited by in F6Publishing: 35] [Reference Citation Analysis]