BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khoo US, Chan KY, Chan VS, Lin CL. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl) 2008;86:861-74. [PMID: 18458800 DOI: 10.1007/s00109-008-0350-2] [Cited by in Crossref: 93] [Cited by in F6Publishing: 85] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Obermajer N, Sattin S, Colombo C, Bruno M, Svajger U, Anderluh M, Bernardi A. Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Mol Divers 2011;15:347-60. [PMID: 21076980 DOI: 10.1007/s11030-010-9285-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
2 Takahara K, Arita T, Tokieda S, Shibata N, Okawa Y, Tateno H, Hirabayashi J, Inaba K. Difference in fine specificity to polysaccharides of Candida albicans mannoprotein between mouse SIGNR1 and human DC-SIGN. Infect Immun 2012;80:1699-706. [PMID: 22331432 DOI: 10.1128/IAI.06308-11] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
3 Gonzalez OA, Kirakodu S, Novak MJ, Stromberg AJ, Orraca L, Gonzalez-Martinez J, Burgos A, Ebersole JL. Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology 2018;223:279-87. [PMID: 29066255 DOI: 10.1016/j.imbio.2017.10.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
4 Swystun LL, Ogiwara K, Rawley O, Brown C, Georgescu I, Hopman W, Labarque V, Male C, Thom K, Blanchette VS, Carcao MD, Lillicrap D. Genetic determinants of VWF clearance and FVIII binding modify FVIII pharmacokinetics in pediatric hemophilia A patients. Blood 2019;134:880-91. [DOI: 10.1182/blood.2019000190] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
5 Swystun LL, Notley C, Georgescu I, Lai JD, Nesbitt K, James PD, Lillicrap D. The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner. J Thromb Haemost 2019;17:681-94. [PMID: 30740857 DOI: 10.1111/jth.14404] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
6 Klassert TE, Goyal S, Stock M, Driesch D, Hussain A, Berrocal-Almanza LC, Myakala R, Sumanlatha G, Valluri V, Ahmed N, Schumann RR, Flores C, Slevogt H. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population. Front Immunol 2018;9:242. [PMID: 29515573 DOI: 10.3389/fimmu.2018.00242] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
7 Scharenberg M, Schwardt O, Rabbani S, Ernst B. Target Selectivity of FimH Antagonists. J Med Chem 2012;55:9810-6. [PMID: 23088608 DOI: 10.1021/jm3010338] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
8 Dos Santos Á, Hadjivasiliou A, Ossa F, Lim NK, Turgut A, Taylor ME, Drickamer K. Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences. Protein Sci 2017;26:306-16. [PMID: 27859859 DOI: 10.1002/pro.3083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
9 Nijmeijer BM, Koopsen J, Schinkel J, Prins M, Geijtenbeek TB. Sexually transmitted hepatitis C virus infections: current trends, and recent advances in understanding the spread in men who have sex with men. J Int AIDS Soc 2019;22 Suppl 6:e25348. [PMID: 31468692 DOI: 10.1002/jia2.25348] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
10 Huang SW, Wang SF. SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. Int J Mol Sci 2021;22:3060. [PMID: 33802729 DOI: 10.3390/ijms22063060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
11 Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021;15:662578. [PMID: 33897376 DOI: 10.3389/fncel.2021.662578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Liu X, Zhang H, Su L, Yang P, Xin Z, Zou J, Ren S, Zuo Y. Low expression of dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein in lung cancer and significant correlations with brain metastasis and natural killer cells. Mol Cell Biochem 2015;407:151-60. [PMID: 26150177 DOI: 10.1007/s11010-015-2465-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
13 Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017;9:E59. [PMID: 28327518 DOI: 10.3390/v9030059] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]
14 Kim HA, Choi B, Suh CH, Han MH, Jung JY, Sayeed HM, Kim YW, Sohn S. Highly Expression of CD11b and CD32 on Peripheral Blood Mononuclear Cells from Patients with Adult-Onset Still's Disease. Int J Mol Sci 2017;18:E202. [PMID: 28106835 DOI: 10.3390/ijms18010202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
15 Ojeda N, Salazar C, Cárdenas C, Marshall SH. Expression of DC-SIGN-like C-Type Lectin Receptors in Salmo salar. Dev Comp Immunol 2020;113:103806. [PMID: 32739503 DOI: 10.1016/j.dci.2020.103806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Carbaugh DL, Baric RS, Lazear HM. Envelope Protein Glycosylation Mediates Zika Virus Pathogenesis. J Virol 2019;93:e00113-19. [PMID: 30944176 DOI: 10.1128/JVI.00113-19] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 22.0] [Reference Citation Analysis]
17 Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021;13:5203. [PMID: 34680351 DOI: 10.3390/cancers13205203] [Reference Citation Analysis]
18 Gillespie L, Roosendahl P, Ng WC, Brooks AG, Reading PC, Londrigan SL. Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN. Sci Rep 2016;6:19428. [PMID: 26763587 DOI: 10.1038/srep19428] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
19 Seoane R, Vidal S, Bouzaher YH, El Motiam A, Rivas C. The Interaction of Viruses with the Cellular Senescence Response. Biology (Basel) 2020;9:E455. [PMID: 33317104 DOI: 10.3390/biology9120455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Ogiwara K, Swystun LL, Paine AS, Kepa S, Choi SJ, Rejtö J, Hopman W, Pabinger I, Lillicrap D. Factor VIII pharmacokinetics associates with genetic modifiers of VWF and FVIII clearance in an adult hemophilia A population. J Thromb Haemost 2021;19:654-63. [PMID: 33219619 DOI: 10.1111/jth.15183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 da Silva RC, Cunha Tavares Nde A, Moura R, Coelho A, Guimarães RL, Araújo J, Crovella S, Brandão LA, Silva Jde A. DC-SIGN polymorphisms are associated to type 1 diabetes mellitus. Immunobiology 2014;219:859-65. [PMID: 25092567 DOI: 10.1016/j.imbio.2014.07.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
22 Robinson JA, Moehle K. Structural aspects of molecular recognition in the immune system. Part II: Pattern recognition receptors (IUPAC Technical Report). Pure and Applied Chemistry 2014;86:1483-538. [DOI: 10.1515/pac-2013-1026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
23 Cai G, Du M, Bossé Y, Albrecht H, Qin F, Luo X, Androulakis XM, Cheng C, Nagarkatti M, Nagarkatti P, Christiani DC, Whitfield ML, Amos CI, Xiao F. SARS-CoV-2 Impairs Dendritic Cells and Regulates DC-SIGN Gene Expression in Tissues. Int J Mol Sci 2021;22:9228. [PMID: 34502134 DOI: 10.3390/ijms22179228] [Reference Citation Analysis]
24 Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol 2013;332:267-90. [PMID: 23608630 DOI: 10.1016/j.jtbi.2013.03.024] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 5.9] [Reference Citation Analysis]
25 Raich I, Lövyová Z, Trnka L, Parkan K, Kessler J, Pohl R, Kaminský J. Limitations in the description of conformational preferences of C-disaccharides: The (1 → 3)-C-mannobiose case. Carbohydr Res 2017;451:42-50. [PMID: 28950209 DOI: 10.1016/j.carres.2017.09.006] [Reference Citation Analysis]
26 McNally AK, Anderson JM. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A 2015;103:1380-90. [PMID: 25045023 DOI: 10.1002/jbm.a.35280] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
27 O'sullivan JM, Ward S, Lavin M, O'donnell JS. von Willebrand factor clearance - biological mechanisms and clinical significance. Br J Haematol 2018;183:185-95. [DOI: 10.1111/bjh.15565] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
28 Sales Pereira LH, Alves ADC, Siqueira Ferreira JM, Dos Santos LL. Soluble DC-SIGN isoforms: Ligands with unknown functions - A mini-review. Microb Pathog 2021;150:104731. [PMID: 33429051 DOI: 10.1016/j.micpath.2021.104731] [Reference Citation Analysis]
29 Lennemann NJ, Rhein BA, Ndungo E, Chandran K, Qiu X, Maury W. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. mBio 2014;5:e00862-13. [PMID: 24473128 DOI: 10.1128/mBio.00862-13] [Cited by in Crossref: 69] [Cited by in F6Publishing: 46] [Article Influence: 9.9] [Reference Citation Analysis]
30 Goyal S, Klassert TE, Slevogt H. C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 2016;205:513-35. [DOI: 10.1007/s00430-016-0470-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
31 Martínez MG, Prado Acosta M, Candurra NA, Ruzal SM. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 2012;422:590-5. [PMID: 22595457 DOI: 10.1016/j.bbrc.2012.05.031] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
32 Shu C, Wang S, Xu T. Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes. Dev Comp Immunol 2015;50:19-25. [PMID: 25596146 DOI: 10.1016/j.dci.2015.01.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
33 Chan KY, Xu MS, Ching JC, So TM, Lai ST, Chu CM, Yam LY, Wong AT, Chung PH, Chan VS, Lin CL, Sham PC, Leung GM, Peiris JS, Khoo US. CD209 (DC-SIGN) -336A>G promoter polymorphism and severe acute respiratory syndrome in Hong Kong Chinese. Hum Immunol 2010;71:702-7. [PMID: 20359516 DOI: 10.1016/j.humimm.2010.03.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.5] [Reference Citation Analysis]
34 Huang Y, Zhang R, Gao T, Xu H, Wu T, Ren Q. 2-Transmembrane C-type lectin from oriental river prawn Macrobrachium nipponense participates in antibacterial immune response. Fish & Shellfish Immunology 2019;91:58-67. [DOI: 10.1016/j.fsi.2019.05.029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
35 Zhang Y, Buckles E, Whittaker GR. Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Vet Microbiol 2012;157:285-93. [PMID: 22340967 DOI: 10.1016/j.vetmic.2012.01.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
36 Feinberg H, Tso CK, Taylor ME, Drickamer K, Weis WI. Segmented helical structure of the neck region of the glycan-binding receptor DC-SIGNR. J Mol Biol 2009;394:613-20. [PMID: 19835887 DOI: 10.1016/j.jmb.2009.10.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
37 Auwerx J, François KO, Vanstreels E, Van Laethem K, Daelemans D, Schols D, Balzarini J. Capture and transmission of HIV-1 by the C-type lectin L-SIGN (DC-SIGNR) is inhibited by carbohydrate-binding agents and polyanions. Antiviral Res 2009;83:61-70. [PMID: 19514109 DOI: 10.1016/j.antiviral.2009.03.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
38 Agrelli A, de Moura RR, Crovella S, Brandão LAC. ZIKA virus entry mechanisms in human cells. Infection, Genetics and Evolution 2019;69:22-9. [DOI: 10.1016/j.meegid.2019.01.018] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
39 Murugaiah V, Yasmin H, Pandit H, Ganguly K, Subedi R, Al-Mozaini M, Madan T, Kishore U. Innate Immune Response Against HIV-1. Adv Exp Med Biol 2021;1313:23-58. [PMID: 34661890 DOI: 10.1007/978-3-030-67452-6_3] [Reference Citation Analysis]
40 da Silva RC, Segat L, Crovella S. Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission. Hum Immunol. 2011;72:305-311. [PMID: 21277928 DOI: 10.1016/j.humimm.2011.01.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
41 Yang Q, Wang P, Wang S, Wang Y, Feng S, Zhang S, Li H. The hepatic lectin of zebrafish binds a wide range of bacteria and participates in immune defense. Fish & Shellfish Immunology 2018;82:267-78. [DOI: 10.1016/j.fsi.2018.08.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
42 Cordero-Rivera CD, De Jesús-González LA, Osuna-Ramos JF, Palacios-Rápalo SN, Farfan-Morales CN, Reyes-Ruiz JM, Del Ángel RM. The importance of viral and cellular factors on flavivirus entry. Curr Opin Virol 2021;49:164-75. [PMID: 34171540 DOI: 10.1016/j.coviro.2021.05.001] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Jo E, Elvitigala DAS, Wan Q, oh M, Oh C, Lee J. Identification and molecular profiling of DC-SIGN-like from big belly seahorse (Hippocampus abdominalis) inferring its potential relevancy in host immunity. Developmental & Comparative Immunology 2017;77:270-9. [DOI: 10.1016/j.dci.2017.08.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
44 Huang YW, Meng XJ. Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing: comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species. Dev Comp Immunol 2009;33:747-60. [PMID: 19166875 DOI: 10.1016/j.dci.2008.12.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
45 Tan LM, Li X, Qiu CF, Zhu T, Hu CP, Yin JY, Zhang W, Zhou HH, Liu ZQ. CLEC4M is associated with poor prognosis and promotes cisplatin resistance in NSCLC patients. J Cancer 2019;10:6374-83. [PMID: 31772670 DOI: 10.7150/jca.30139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Herrero R, Pineda JA, Rivero-Juarez A, Echbarthi M, Real LM, Camacho A, Macias J, Fibla J, Rivero A, Caruz A. Common haplotypes in CD209 promoter and susceptibility to HIV-1 infection in intravenous drug users. Infect Genet Evol 2016;45:20-5. [PMID: 27539513 DOI: 10.1016/j.meegid.2016.08.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Achilli S, Monteiro JT, Serna S, Mayer-Lambertz S, Thépaut M, Le Roy A, Ebel C, Reichardt NC, Lepenies B, Fieschi F, Vivès C. TETRALEC, Artificial Tetrameric Lectins: A Tool to Screen Ligand and Pathogen Interactions. Int J Mol Sci 2020;21:E5290. [PMID: 32722514 DOI: 10.3390/ijms21155290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Londrigan SL, Tate MD, Brooks AG, Reading PC. Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J Leukoc Biol 2012;92:97-106. [PMID: 22124137 DOI: 10.1189/jlb.1011492] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
49 Ehlers S. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. Eur J Cell Biol 2010;89:95-101. [PMID: 19892432 DOI: 10.1016/j.ejcb.2009.10.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.4] [Reference Citation Analysis]
50 Lee DH, Ko JJ, Ji YG, Chung HM, Hwang T. Proteomic identification of RREB1, PDE6B, and CD209 up-regulated in primitive gut tube differentiated from human embryonic stem cells. Pancreas 2012;41:65-73. [PMID: 21792086 DOI: 10.1097/MPA.0b013e3182223e35] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
51 Canard B, Vachon H, Fontaine T, Pin JJ, Paul S, Genin C, Mueller CG. Generation of anti-DC-SIGN monoclonal antibodies capable of blocking HIV-1 gp120 binding and reactive on formalin-fixed tissue. Immunol Lett 2011;135:165-72. [PMID: 21078343 DOI: 10.1016/j.imlet.2010.11.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
52 Katzelnick LC, Bos S, Harris E. Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. Curr Opin Virol 2020;43:59-70. [PMID: 32979816 DOI: 10.1016/j.coviro.2020.08.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
53 Bertolotti B, Oroszová B, Sutkeviciute I, Kniežo L, Fieschi F, Parkan K, Lovyová Z, Kašáková M, Moravcová J. Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydrate Research 2016;435:7-18. [DOI: 10.1016/j.carres.2016.09.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
54 Hussein K, Stucki-Koch A, Müller AM, Arnold R, Kreipe H, Feist H. Complement receptor-associated CD163+/CD18+/CD11c+/CD206-/CD209- expression profile in chronic histiocytic intervillositis of the placenta. Placenta 2019;78:23-8. [PMID: 30955707 DOI: 10.1016/j.placenta.2019.02.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
55 Abdouni Y, Ter Huurne GM, Yilmaz G, Monaco A, Redondo-Gómez C, Meijer EW, Palmans ARA, Becer CR. Self-Assembled Multi- and Single-Chain Glyconanoparticles and Their Lectin Recognition. Biomacromolecules 2021;22:661-70. [PMID: 33373527 DOI: 10.1021/acs.biomac.0c01486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Steffen I, Tsegaye TS, Pöhlmann S. Lectin-like interactions in virus–cell recognition. Microbial Glycobiology. Elsevier; 2010. pp. 567-84. [DOI: 10.1016/b978-0-12-374546-0.00028-6] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
57 Perera-Lecoin M, Meertens L, Carnec X, Amara A. Flavivirus entry receptors: an update. Viruses 2013;6:69-88. [PMID: 24381034 DOI: 10.3390/v6010069] [Cited by in Crossref: 183] [Cited by in F6Publishing: 170] [Article Influence: 22.9] [Reference Citation Analysis]
58 Leckband DE, Menon S, Rosenberg K, Graham SA, Taylor ME, Drickamer K. Geometry and adhesion of extracellular domains of DC-SIGNR neck length variants analyzed by force-distance measurements. Biochemistry 2011;50:6125-32. [PMID: 21650186 DOI: 10.1021/bi2003444] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhang Q, Yoo D. PRRS virus receptors and their role for pathogenesis. Vet Microbiol 2015;177:229-41. [PMID: 25912022 DOI: 10.1016/j.vetmic.2015.04.002] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 10.8] [Reference Citation Analysis]
60 Cunningham AL, Harman A, Kim M, Nasr N, Lai J. Immunobiology of dendritic cells and the influence of HIV infection. Adv Exp Med Biol. 2013;762:1-44. [PMID: 22975870 DOI: 10.1007/978-1-4614-4433-6_1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
61 Rydz N, Swystun LL, Notley C, Paterson AD, Riches JJ, Sponagle K, Boonyawat B, Montgomery RR, James PD, Lillicrap D. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 2013;121:5228-37. [PMID: 23529928 DOI: 10.1182/blood-2012-10-457507] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 9.6] [Reference Citation Analysis]
62 da Silva RC, Segat L, da Cruz HLA, Schindler HC, Montenegro LML, Crovella S, Guimarães RL. Association of CD209 and CD209L polymorphisms with tuberculosis infection in a Northeastern Brazilian population. Mol Biol Rep 2014;41:5449-57. [DOI: 10.1007/s11033-014-3416-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
63 Kristóf E, Zahuczky G, Katona K, Doró Z, Nagy É, Fésüs L. Novel role of ICAM3 and LFA-1 in the clearance of apoptotic neutrophils by human macrophages. Apoptosis 2013;18:1235-51. [DOI: 10.1007/s10495-013-0873-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
64 Hsieh TH, Tsai TT, Chen CL, Shen TJ, Jhan MK, Tseng PC, Lin CF. Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. Front Cell Infect Microbiol 2020;10:375. [PMID: 32850477 DOI: 10.3389/fcimb.2020.00375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Liu D, Xiao X, Zhou P, Zheng H, Li Y, Jin H, Jongkaewwattana A, Luo R. Glycosylation on envelope glycoprotein of duck Tembusu virus affects virus replication in vitro and contributes to the neurovirulence and pathogenicity in vivo. Virulence 2021;12:2400-14. [PMID: 34506259 DOI: 10.1080/21505594.2021.1974329] [Reference Citation Analysis]
66 Redente EF, Jakubzick CV, Martin TR, Riches DW. Innate Immunity. Murray and Nadel's Textbook of Respiratory Medicine. Elsevier; 2016. pp. 184-205.e7. [DOI: 10.1016/b978-1-4557-3383-5.00012-9] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
67 Riches DW, Sawyer RT, Fenton MJ, Martin TR. Innate Immunity in the Lungs. Murray and Nadel's Textbook of Respiratory Medicine. Elsevier; 2010. pp. 255-84. [DOI: 10.1016/b978-1-4160-4710-0.00013-4] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
68 Abdouni Y, Yilmaz G, Monaco A, Aksakal R, Becer CR. Effect of Arm Number and Length of Star-Shaped Glycopolymers on Binding to Dendritic and Langerhans Cell Lectins. Biomacromolecules 2020;21:3756-64. [DOI: 10.1021/acs.biomac.0c00856] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 da Silva RC, Segat L, Zanin V, Arraes LC, Crovella S. Polymorphisms in DC-SIGN and L-SIGN genes are associated with HIV-1 vertical transmission in a Northeastern Brazilian population. Human Immunology 2012;73:1159-65. [DOI: 10.1016/j.humimm.2012.07.338] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
70 Barkhash AV, Kochneva GV, Chub EV, Mikhailova SV, Romaschenko AG. Association between polymorphisms in OAS2 and CD209 genes and predisposition to chronic hepatitis C in Russian population. Microbes Infect 2014;16:445-9. [PMID: 24594345 DOI: 10.1016/j.micinf.2014.02.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
71 Hanna J, Tipparaju P, Mulherkar T, Lin E, Mischley V, Kulkarni R, Bolton A, Byrareddy SN, Jain P. Risk Factors Associated with the Clinical Outcomes of COVID-19 and Its Variants in the Context of Cytokine Storm and Therapeutics/Vaccine Development Challenges. Vaccines (Basel) 2021;9:938. [PMID: 34452063 DOI: 10.3390/vaccines9080938] [Reference Citation Analysis]
72 Cadé M, Muñoz-Garcia J, Babuty A, Fouassier M, Heymann MF, Monahan PE, Heymann D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today 2021:S1359-6446(21)00321-4. [PMID: 34311113 DOI: 10.1016/j.drudis.2021.07.015] [Reference Citation Analysis]
73 Ishibashi M, Morita N, Nomura-Kawaguchi C, Shimizu Y, Wakita T, Esumi M. CLEC4M-positive and CD81-negative Huh7 cells are not susceptible to JFH-1 HCVcc infection but mediate transinfection. Arch Virol 2014;159:2949-55. [PMID: 24965233 DOI: 10.1007/s00705-014-2150-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
74 Borszéková Pulzová L, Ward TA, Chovanec M. XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020;21:E2182. [PMID: 32235701 DOI: 10.3390/ijms21062182] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
75 Klein T, Abgottspon D, Wittwer M, Rabbani S, Herold J, Jiang X, Kleeb S, Lüthi C, Scharenberg M, Bezençon J, Gubler E, Pang L, Smiesko M, Cutting B, Schwardt O, Ernst B. FimH Antagonists for the Oral Treatment of Urinary Tract Infections: From Design and Synthesis to in Vitro and in Vivo Evaluation. J Med Chem 2010;53:8627-41. [DOI: 10.1021/jm101011y] [Cited by in Crossref: 145] [Cited by in F6Publishing: 129] [Article Influence: 13.2] [Reference Citation Analysis]
76 Gillespie L, Gerstenberg K, Ana-Sosa-Batiz F, Parsons MS, Farrukee R, Krabbe M, Spann K, Brooks AG, Londrigan SL, Reading PC. DC-SIGN and L-SIGN Are Attachment Factors That Promote Infection of Target Cells by Human Metapneumovirus in the Presence or Absence of Cellular Glycosaminoglycans. J Virol 2016;90:7848-63. [PMID: 27334579 DOI: 10.1128/JVI.00537-16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
77 Lin AF, Xiang LX, Wang QL, Dong WR, Gong YF, Shao JZ. The DC-SIGN of zebrafish: insights into the existence of a CD209 homologue in a lower vertebrate and its involvement in adaptive immunity. J Immunol 2009;183:7398-410. [PMID: 19890038 DOI: 10.4049/jimmunol.0803955] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 5.9] [Reference Citation Analysis]
78 Yun SI, Lee YM. Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018;7:E68. [PMID: 30104482 DOI: 10.3390/pathogens7030068] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
79 [DOI: 10.1101/2020.11.05.369264] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
80 Choi YK, Fallert Junecko BA, Klamar CR, Reinhart TA. Characterization of cells expressing lymphatic marker LYVE-1 in macaque large intestine during simian immunodeficiency virus infection identifies a large population of nonvascular LYVE-1(+)/DC-SIGN(+) cells. Lymphat Res Biol 2013;11:26-34. [PMID: 23531182 DOI: 10.1089/lrb.2012.0019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
81 Ebersole JL, Kirakodu S, Novak MJ, Orraca L, Stormberg AJ, Gonzalez-Martinez J, Burgos A, Gonzalez OA. Comparative analysis of expression of microbial sensing molecules in mucosal tissues with periodontal disease. Immunobiology 2019;224:196-206. [PMID: 30470434 DOI: 10.1016/j.imbio.2018.11.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
82 Londrigan SL, Turville SG, Tate MD, Deng YM, Brooks AG, Reading PC. N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol 2011;85:2990-3000. [PMID: 21191006 DOI: 10.1128/JVI.01705-10] [Cited by in Crossref: 85] [Cited by in F6Publishing: 61] [Article Influence: 7.7] [Reference Citation Analysis]
83 Manzo C, Torreno-Pina JA, Joosten B, Reinieren-Beeren I, Gualda EJ, Loza-Alvarez P, Figdor CG, Garcia-Parajo MF, Cambi A. The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen-presenting cells. J Biol Chem 2012;287:38946-55. [PMID: 23019323 DOI: 10.1074/jbc.M112.380121] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
84 Carbaugh DL, Lazear HM. Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J Virol 2020;94:e00104-20. [PMID: 32161171 DOI: 10.1128/JVI.00104-20] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 15.0] [Reference Citation Analysis]
85 Ning S, Yao M, Wu Y, Zhou X, Zhong C, Yan K, Wei Z, Xie Y. Correlation of variable repeat number in the neck regions of DC-SIGN and DC-SIGNR with susceptibility to nasopharyngeal carcinoma in a Chinese population. Cancer Manag Res 2018;10:3193-8. [PMID: 30233235 DOI: 10.2147/CMAR.S167114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]