BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019;76:2133-69. [PMID: 30937469 DOI: 10.1007/s00018-019-03068-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Lu H, Chen S, Nie Q, Xue Q, Fan H, Wang Y, Fan S, Zhu J, Shen H, Li H, Fang Q, Ni J, Chen G. Synaptotagmin-3 interactions with GluA2 mediate brain damage and impair functional recovery in stroke. Cell Rep 2023;42:112233. [PMID: 36892998 DOI: 10.1016/j.celrep.2023.112233] [Reference Citation Analysis]
2 Zhou L, Sun X, Duan J. NMDARs regulate the excitatory-inhibitory balance within neural circuits. Brain Science Advances 2023;9:3-14. [DOI: 10.26599/bsa.2022.9050020] [Reference Citation Analysis]
3 Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) receptor tetramerization by auxiliary subunits. bioRxiv 2023:2023. [PMID: 36798164 DOI: 10.1101/2023.02.07.527516] [Reference Citation Analysis]
4 Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023;41:103-17. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Reference Citation Analysis]
5 Bahouth SW, Nooh MM, Mancarella S. Involvement of SAP97 anchored multiprotein complexes in regulating cardiorenal signaling and trafficking networks. Biochem Pharmacol 2023;208:115406. [PMID: 36596415 DOI: 10.1016/j.bcp.2022.115406] [Reference Citation Analysis]
6 Liu Y, Zhang M, Liu Z, Li S, Liu H, Huang R, Yi F, Zhou J. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids 2023;55:263-73. [PMID: 36539546 DOI: 10.1007/s00726-022-03223-8] [Reference Citation Analysis]
7 Washburn HR, Chander P, Srikanth KD, Dalva MB. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease. Neuroscience 2023;508:137-52. [PMID: 36460219 DOI: 10.1016/j.neuroscience.2022.11.030] [Reference Citation Analysis]
8 Rao P, Gouaux E. Purification and biochemical analysis of native AMPA receptors from three different mammalian species. PLoS One 2023;18:e0275351. [PMID: 36930594 DOI: 10.1371/journal.pone.0275351] [Reference Citation Analysis]
9 Bencsik N, Oueslati Morales CO, Hausser A, Schlett K. Endocytosis of AMPA receptors: Role in neurological conditions. Prog Mol Biol Transl Sci 2023;196:59-97. [PMID: 36813366 DOI: 10.1016/bs.pmbts.2022.09.007] [Reference Citation Analysis]
10 Hoffman JL, Faccidomo SP, Taylor SM, Demiceli KG, May AM, Smith EN, Whindleton CM, Hodge CW. Inhibition of AMPA receptors bound to transmembrane AMPA receptor regulatory protein γ-8 (TARP γ-8) blunts the positive reinforcing properties of alcohol and sucrose in a brain region-dependent manner.. [DOI: 10.1101/2022.12.14.520457] [Reference Citation Analysis]
11 Stepan J, Heinz DE, Dethloff F, Bajaj T, Zellner A, Hafner K, Wiechmann S, Mackert S, Mecdad Y, Rabenstein M, Ebert T, Martinelli S, Häusl AS, Pöhlmann ML, Hermann A, Ma X, Pavenstädt H, Schmidt MV, Philipsen A, Turck CW, Deussing JM, Kuster B, Wehr MC, Stein V, Kremerskothen J, Wotjak CT, Gassen NC. Hippo-released WWC1 facilitates AMPA receptor regulatory complexes for hippocampal learning. Cell Rep 2022;41:111766. [PMID: 36476872 DOI: 10.1016/j.celrep.2022.111766] [Reference Citation Analysis]
12 Kishimoto T, Masui K, Minoshima W, Hosokawa C. Recent advances in optical manipulation of cells and molecules for biological science. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022;53:100554. [DOI: 10.1016/j.jphotochemrev.2022.100554] [Reference Citation Analysis]
13 Lauriello A, McVeigh Q, Sung RJ. GluR2Q and GluR2R AMPA Subunits are not Targets of lypd2 Interaction. PLoS One 2022;17:e0278278. [PMID: 36441793 DOI: 10.1371/journal.pone.0278278] [Reference Citation Analysis]
14 Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022;11. [PMID: 36497075 DOI: 10.3390/cells11233815] [Reference Citation Analysis]
15 van der Spek SJF, Pandya NJ, Koopmans F, Paliukhovich I, van der Schors RC, Otten M, Smit AB, Li KW. Expression and Interaction Proteomics of GluA1- and GluA3-Subunit-Containing AMPARs Reveal Distinct Protein Composition. Cells 2022;11. [PMID: 36429079 DOI: 10.3390/cells11223648] [Reference Citation Analysis]
16 Maslov I, Hendrix J. Unmasking a two-faced protein. Elife 2022;11:e83482. [PMID: 36260068 DOI: 10.7554/eLife.83482] [Reference Citation Analysis]
17 Rao P, Gouaux E. Purification and biochemical analysis of native AMPA receptors from three different mammalian species.. [DOI: 10.1101/2022.09.16.508249] [Reference Citation Analysis]
18 Bonnet C, Charpentier J, Retailleau N, Choquet D, Coussen F. 4.1N and SAP97 regulate different phases of AMPA receptor intracellular transport.. [DOI: 10.1101/2022.09.05.506328] [Reference Citation Analysis]
19 Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022;14:833782. [DOI: 10.3389/fnsyn.2022.833782] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Christensen NR, Pedersen CP, Sereikaite V, Pedersen JN, Vistrup-Parry M, Sørensen AT, Otzen D, Teilum K, Madsen KL, Strømgaard K. Bidirectional protein-protein interactions control liquid-liquid phase separation of PSD-95 and its interaction partners. iScience 2022;25:103808. [PMID: 35198873 DOI: 10.1016/j.isci.2022.103808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Royo M, Escolano BA, Madrigal MP, Jurado S. AMPA Receptor Function in Hypothalamic Synapses. Front Synaptic Neurosci 2022;14:833449. [DOI: 10.3389/fnsyn.2022.833449] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zoubovsky SP, Williams MT, Hoseus S, Tumukuntala S, Riesenberg A, Schulkin J, Vorhees CV, Campbell K, Lim HW, Muglia LJ. Neurobehavioral abnormalities following prenatal psychosocial stress are differentially modulated by maternal environment. Transl Psychiatry 2022;12:22. [PMID: 35039487 DOI: 10.1038/s41398-022-01785-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
23 Sprengel R, Eltokhi A. Ionotropic Glutamate Receptors (and Their Role in Health and Disease). Neuroscience in the 21st Century 2022. [DOI: 10.1007/978-1-4614-6434-1_4-3] [Reference Citation Analysis]
24 Musto AE. Glutamate and Epilepsy: An Insight from Temporal Lobe Epilepsy. Glutamate and Neuropsychiatric Disorders 2022. [DOI: 10.1007/978-3-030-87480-3_18] [Reference Citation Analysis]
25 Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021;3:277-89. [PMID: 34766008 DOI: 10.1016/j.crstbi.2021.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Moreno Manrique JF, Voit PR, Windsor KE, Karla AR, Rodriguez SR, Beaudoin GMJ 3rd. SynapseJ: An Automated, Synapse Identification Macro for ImageJ. Front Neural Circuits 2021;15:731333. [PMID: 34675779 DOI: 10.3389/fncir.2021.731333] [Reference Citation Analysis]
27 Cruz Del Angel Y, Orfila JE, Herson PS, Brooks-Kayal A, González MI. Down-regulation of AMPA receptors and long-term potentiation during early epileptogenesis. Epilepsy Behav 2021;124:108320. [PMID: 34592633 DOI: 10.1016/j.yebeh.2021.108320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C, Castro-Torres RD, Auladell C. c-Jun N-Terminal Kinases in Alzheimer's Disease: A Possible Target for the Modulation of the Earliest Alterations. J Alzheimers Dis 2021;82:S127-39. [PMID: 33216036 DOI: 10.3233/JAD-201053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Stachowicz K. Deciphering the mechanisms of regulation of an excitatory synapse via cyclooxygenase-2. A review. Biochem Pharmacol 2021;192:114729. [PMID: 34400127 DOI: 10.1016/j.bcp.2021.114729] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Seewald A, Schönherr S, Hörtnagl H, Ehrlich I, Schmuckermair C, Ferraguti F. Fear Memory Retrieval Is Associated With a Reduction in AMPA Receptor Density at Thalamic to Amygdala Intercalated Cell Synapses. Front Synaptic Neurosci 2021;13:634558. [PMID: 34295235 DOI: 10.3389/fnsyn.2021.634558] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Alhowail AH, Pinky PD, Eggert M, Bloemer J, Woodie LN, Buabeid MA, Bhattacharya S, Jasper SL, Bhattacharya D, Dhanasekaran M, Escobar M, Arnold RD, Suppiramaniam V. Doxorubicin induces dysregulation of AMPA receptor and impairs hippocampal synaptic plasticity leading to learning and memory deficits. Heliyon 2021;7:e07456. [PMID: 34296005 DOI: 10.1016/j.heliyon.2021.e07456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Moreno Manrique JF, Voit PR, Windsor KE, Karla AR, Rodriguez SR, Beaudoin GMJ. SynapseJ: an automated, synapse identification macro for ImageJ.. [DOI: 10.1101/2021.06.24.449851] [Reference Citation Analysis]
33 Hoffman JL, Faccidomo S, Saunders BL, Taylor SM, Kim M, Hodge CW. Inhibition of AMPA receptors (AMPARs) containing transmembrane AMPAR regulatory protein γ-8 with JNJ-55511118 shows preclinical efficacy in reducing chronic repetitive alcohol self-administration. Alcohol Clin Exp Res 2021;45:1424-35. [PMID: 34086361 DOI: 10.1111/acer.14639] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021;195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Christensen NR, Pedersen CP, Sereikaite V, Pedersen JN, Vistrup-parry M, Sørensen AT, Otzen D, Arleth L, Teilum K, Madsen KL, Strømgaard K. Bi-directional protein-protein interactions control liquid-liquid phase separation of PSD-95 and its interaction partners.. [DOI: 10.1101/2021.03.03.433781] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Bissen D, Kracht MK, Foss F, Hofmann J, Acker-Palmer A. EphrinB2 and GRIP1 stabilize mushroom spines during denervation-induced homeostatic plasticity. Cell Rep 2021;34:108923. [PMID: 33789115 DOI: 10.1016/j.celrep.2021.108923] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Rodriguez-Chavez V, Moran J, Molina-Salinas G, Zepeda Ruiz WA, Rodriguez MC, Picazo O, Cerbon M. Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin. Neuroscience 2021;461:180-93. [PMID: 33647379 DOI: 10.1016/j.neuroscience.2021.02.027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Eltokhi A, Gonzalez-Lozano MA, Oettl LL, Rozov A, Pitzer C, Röth R, Berkel S, Hüser M, Harten A, Kelsch W, Smit AB, Rappold GA, Sprengel R. Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol Psychiatry 2021;26:6482-504. [PMID: 34021263 DOI: 10.1038/s41380-021-01140-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
39 Phillips MB, Nigam A, Johnson JW. Interplay between Gating and Block of Ligand-Gated Ion Channels. Brain Sci 2020;10:E928. [PMID: 33271923 DOI: 10.3390/brainsci10120928] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
40 Lira M, Mira RG, Carvajal FJ, Zamorano P, Inestrosa NC, Cerpa W. Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020;9:E2402. [PMID: 33153008 DOI: 10.3390/cells9112402] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
41 Dolgacheva LP, Tuleukhanov ST, Zinchenko VP. Participation of Ca2+-Permeable AMPA Receptors in Synaptic Plasticity. Biochem Moscow Suppl Ser A 2020;14:194-204. [DOI: 10.1134/s1990747820030046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Widagdo J, Kerk JW, Guntupalli S, Huganir RL, Anggono V. Subunit-Specific Augmentation of AMPA Receptor Ubiquitination by Phorbol Ester. Cell Mol Neurobiol 2020;40:1213-22. [PMID: 32052226 DOI: 10.1007/s10571-020-00809-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Kiragasi B, Goel P, Perry S, Han Y, Li X, Dickman D. The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. Proc Natl Acad Sci U S A 2020;117:25830-9. [PMID: 32973097 DOI: 10.1073/pnas.1915464117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
44 Zhang H, Bramham CR. Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues. Eur J Neurosci 2020. [PMID: 32888346 DOI: 10.1111/ejn.14958] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
45 Zhang J, Li J, Yin Y, Li X, Jiang Y, Wang Y, Cha C, Guo G. Collapsin Response Mediator Protein 2 and Endophilin2 Coordinate Regulation of AMPA Receptor GluA1 Subunit Recycling. Front Mol Neurosci 2020;13:128. [PMID: 32848595 DOI: 10.3389/fnmol.2020.00128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
46 Wei M, Wang M, Wang J, Su F, Wang Y, Sun M, Wang S, Liu M, Wang H, Lu M, Li W, Gong Y, Yang L, Zhang C. PORCN Negatively Regulates AMPAR Function Independently of Subunit Composition and the Amino-Terminal and Carboxy-Terminal Domains of AMPARs. Front Cell Dev Biol 2020;8:829. [PMID: 32984326 DOI: 10.3389/fcell.2020.00829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Schwenk J, Fakler B. Building of AMPA‐type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. J Physiol 2021;599:2639-53. [DOI: 10.1113/jp279025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
48 Jacobi E, Engelhardt J. Modulation of information processing by AMPA receptor auxiliary subunits. J Physiol 2021;599:471-83. [DOI: 10.1113/jp276698] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
49 Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020;70:1684-701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
50 Zoubovsky SP, Williams MT, Hoseus S, Tumukuntala S, Riesenberg A, Schulkin J, Vorhees CV, Campbell K, Lim H, Muglia LJ. Prenatal psychosocial stress-induced behavioral and neuroendocrine abnormalities are associated with sex-specific alterations in synaptic transmission and differentially modulated by maternal environment.. [DOI: 10.1101/2020.05.20.106674] [Reference Citation Analysis]
51 Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020;18:e3000665. [PMID: 32275651 DOI: 10.1371/journal.pbio.3000665] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 21.3] [Reference Citation Analysis]
52 Eguchi K, Velicky P, Hollergschwandtner E, Itakura M, Fukazawa Y, Danzl JG, Shigemoto R. Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions. Front Cell Neurosci 2020;14:63. [PMID: 32265664 DOI: 10.3389/fncel.2020.00063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
53 Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of Stretch-Regulated TRPV2 and TRPV4 Channels Inferred Through Interactomics. Biomolecules 2019;9:E791. [PMID: 31783610 DOI: 10.3390/biom9120791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
54 Eguchi K, Velicky P, Hollergschwandtner E, Itakura M, Fukazawa Y, Danzl JG, Shigemoto R. Advantages of acute brain slices prepared at physiological temperature in characterization of synaptic functions.. [DOI: 10.1101/845461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]