BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shadrin IY, Khodabukus A, Bursac N. Striated muscle function, regeneration, and repair. Cell Mol Life Sci 2016;73:4175-202. [PMID: 27271751 DOI: 10.1007/s00018-016-2285-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Öztatlı H, Altintas Z, Garipcan B. Biosensors for organs-on-a-chip and organoids. Advanced Sensor Technology 2023. [DOI: 10.1016/b978-0-323-90222-9.00007-8] [Reference Citation Analysis]
2 Chemello F, Sales G, Cagnin S. Single-cell/nucleus transcriptomic and muscle pathologies. Transcriptome Profiling 2023. [DOI: 10.1016/b978-0-323-91810-7.00011-x] [Reference Citation Analysis]
3 Liu Y, Huang C, Bai M, Pi C, Zhang D, Xie J. The roles of Runx1 in skeletal development and osteoarthritis: A concise review. Heliyon 2022;8:e12656. [PMID: 36636224 DOI: 10.1016/j.heliyon.2022.e12656] [Reference Citation Analysis]
4 Szabo DA, Neagu N, Teodorescu S, Predescu C, Sopa IS, Panait L. TECAR Therapy Associated with High-Intensity Laser Therapy (Hilt) and Manual Therapy in the Treatment of Muscle Disorders: A Literature Review on the Theorised Effects Supporting Their Use. JCM 2022;11:6149. [DOI: 10.3390/jcm11206149] [Reference Citation Analysis]
5 Huang Y, Gong Y, Liu Y, Lu J. Global trends and hot topics in electrical stimulation of skeletal muscle research over the past decade: A bibliometric analysis. Front Neurol 2022;13:991099. [DOI: 10.3389/fneur.2022.991099] [Reference Citation Analysis]
6 Villani A, Ciucci G, Colliva A, Marullo S, Zacchigna S, Prattichizzo D. RobHeart: Soft Robot for Heart-Like Volumetric Stress on Seeded Cardiac Cells. 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) 2022. [DOI: 10.1109/biorob52689.2022.9925484] [Reference Citation Analysis]
7 Li S, Rong H, Hao Z, Tan R, Li H, Zhu T. Hypertrophy of paravertebral muscles after epidural electrical stimulation shifted: A case report. Front Surg 2022;9. [DOI: 10.3389/fsurg.2022.936259] [Reference Citation Analysis]
8 Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. Elife 2022;11:e77204. [PMID: 35604384 DOI: 10.7554/eLife.77204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ronzoni FL, Aliberti F, Scocozza F, Benedetti L, Auricchio F, Sampaolesi M, Cusella G, Redwan IN, Ceccarelli G, Conti M. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. J Tissue Eng Regen Med 2022. [PMID: 35246958 DOI: 10.1002/term.3293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Beldjilali-Labro M, Jellali R, Brown AD, Garcia Garcia A, Lerebours A, Guenin E, Bedoui F, Dufresne M, Stewart C, Grosset JF, Legallais C. Multiscale-Engineered Muscle Constructs: PEG Hydrogel Micro-Patterning on an Electrospun PCL Mat Functionalized with Gold Nanoparticles. Int J Mol Sci 2021;23:260. [PMID: 35008686 DOI: 10.3390/ijms23010260] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Galib M, Araf Y, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. J CLIN EXP INVEST 2021;12:em00783. [DOI: 10.29333/jcei/11289] [Reference Citation Analysis]
12 Strash N, DeLuca S, Janer Carattini GL, Heo SC, Gorsuch R, Bursac N. Human Erbb2-induced Erk activity robustly stimulates cycling and functional remodeling of rat and human cardiomyocytes. Elife 2021;10:e65512. [PMID: 34665129 DOI: 10.7554/eLife.65512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Kim KS, Joo HJ, Choi SC, Kim JH, Park CY, Song MH, Noh JM, Cha JJ, Hong SJ, Ahn TH, Kim MN, Na JE, Rhyu IJ, Lim DS. Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction. Biofabrication 2021;13. [PMID: 34404035 DOI: 10.1088/1758-5090/ac1e78] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Yan Z, Yan Z, Liu S, Yin Y, Yang T, Chen Q. Regulative Mechanism of Guanidinoacetic Acid on Skeletal Muscle Development and Its Application Prospects in Animal Husbandry: A Review. Front Nutr 2021;8:714567. [PMID: 34458310 DOI: 10.3389/fnut.2021.714567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 Adewale AO, Ahn YH. Titin N2A Domain and Its Interactions at the Sarcomere. Int J Mol Sci 2021;22:7563. [PMID: 34299183 DOI: 10.3390/ijms22147563] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021:S1084-9521(21)00168-3. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Dessauge F, Schleder C, Perruchot MH, Rouger K. 3D in vitro models of skeletal muscle: myopshere, myobundle and bioprinted muscle construct. Vet Res 2021;52:72. [PMID: 34011392 DOI: 10.1186/s13567-021-00942-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
18 Helfer A, Bursac N. Frame-Hydrogel Methodology for Engineering Highly Functional Cardiac Tissue Constructs. Methods Mol Biol 2021;2158:171-86. [PMID: 32857373 DOI: 10.1007/978-1-0716-0668-1_13] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020;116:1410-23. [PMID: 32154891 DOI: 10.1093/cvr/cvaa034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
20 Wang J, Zhang X, Park J, Park I, Kilicarslan E, Kim Y, Dou Z, Bashir R, Gazzola M. Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines. Advanced Intelligent Systems 2021;3:2000237. [DOI: 10.1002/aisy.202000237] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release 2021;329:237-56. [DOI: 10.1016/j.jconrel.2020.11.044] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
22 Ananthakumar A, Liu Y, Fernandez CE, Truskey GA, Voora D. Modeling statin myopathy in a human skeletal muscle microphysiological system. PLoS One 2020;15:e0242422. [PMID: 33237943 DOI: 10.1371/journal.pone.0242422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Watanabe K, Katagiri S, Takahashi H, Sasaki N, Maekawa S, Komazaki R, Hatasa M, Kitajima Y, Maruyama Y, Shiba T, Komatsu K, Ohsugi Y, Tanaka K, Matsuzawa A, Hirota T, Tohara H, Eguchi Y, Anzai K, Hattori A, Iwata T. Porphyromonas gingivalis impairs glucose uptake in skeletal muscle associated with altering gut microbiota. FASEB j 2021;35. [DOI: 10.1096/fj.202001158r] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
24 Li Y, Xu C, Wang H, Liu X, Jiang L, Liang S, Wu Z, Wang Z, Zhou J, Xiao W, Guo Z, Wang Y. Systems pharmacology reveals the multi-level synergetic mechanism of action of Ginkgo biloba L. leaves for cardiomyopathy treatment. J Ethnopharmacol 2021;264:113279. [PMID: 32810617 DOI: 10.1016/j.jep.2020.113279] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
25 Ferri E, Marzetti E, Calvani R, Picca A, Cesari M, Arosio B. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci 2020;21:E5236. [PMID: 32718064 DOI: 10.3390/ijms21155236] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 9.7] [Reference Citation Analysis]
26 Yang P, Li C, Lee M, Marzvanyan A, Zhao Z, Ting K, Soo C, Zheng Z. Photopolymerizable Hydrogel-Encapsulated Fibromodulin-Reprogrammed Cells for Muscle Regeneration. Tissue Eng Part A 2020;26:1112-22. [PMID: 32323608 DOI: 10.1089/ten.TEA.2020.0026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
27 López-Dávila AJ, Chalovich JM, Zittrich S, Piep B, Matinmehr F, Málnási-Csizmadia A, Rauscher AÁ, Kraft T, Brenner B, Stehle R. Cycling Cross-Bridges Contribute to Thin Filament Activation in Human Slow-Twitch Fibers. Front Physiol 2020;11:144. [PMID: 32265723 DOI: 10.3389/fphys.2020.00144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
28 Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020;11:79. [PMID: 32087752 DOI: 10.1186/s13287-020-1587-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020;9:E288. [PMID: 31991655 DOI: 10.3390/cells9020288] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
30 Pani S, Bal NC. Aging in Muscle. Models, Molecules and Mechanisms in Biogerontology 2020. [DOI: 10.1007/978-981-32-9005-1_16] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Soliman GF, Abdel-Maksoud OM, Khalifa MM, Rashed LA, Ibrahim W, Morsi H, Abdallah H, Bastawy N. Effect of nebivolol on altered skeletal and cardiac muscles induced by dyslipidemia in rats: impact on oxidative and inflammatory machineries. Arch Physiol Biochem 2019;:1-11. [PMID: 31876193 DOI: 10.1080/13813455.2019.1693599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Sun J, Ma X, Chu HT, Feng B, Tuan RS, Jiang Y. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling. Front Bioeng Biotechnol 2019;7:373. [PMID: 31850331 DOI: 10.3389/fbioe.2019.00373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Almonacid Suarez AM, Zhou Q, Rijn P, Harmsen MC. Directional topography gradients drive optimum alignment and differentiation of human myoblasts. J Tissue Eng Regen Med 2019;13:2234-45. [DOI: 10.1002/term.2976] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
34 Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019;221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 12.0] [Reference Citation Analysis]
35 Zheng Z, Li C, Ha P, Chang GX, Yang P, Zhang X, Kim JK, Jiang W, Pang X, Berthiaume EA, Mills Z, Haveles CS, Chen E, Ting K, Soo C. CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells. J Clin Invest 2019;129:3236-51. [PMID: 31305260 DOI: 10.1172/JCI125015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
36 Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018;15:20170380. [PMID: 29343633 DOI: 10.1098/rsif.2017.0380] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 11.5] [Reference Citation Analysis]
37 Naldaiz-Gastesi N, Goicoechea M, Aragón IM, Pérez-López V, Fuertes-Alvarez S, Herrera-Imbroda B, López de Munain A, de Luna-Diaz R, Baptista PM, Fernández MA, Lara MF, Izeta A. Isolation and characterization of myogenic precursor cells from human cremaster muscle. Sci Rep 2019;9:3454. [PMID: 30837559 DOI: 10.1038/s41598-019-40042-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
38 Saini J, Faroni A, Abd Al Samid M, Reid AJ, Lightfoot AP, Mamchaoui K, Mouly V, Butler-Browne G, McPhee JS, Degens H, Al-Shanti N. Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells. Stem Cells Cloning 2019;12:1-9. [PMID: 30863121 DOI: 10.2147/SCCAA.S187655] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
39 Ganguly K. Overview of the Internal Physiological System of the Human Body. Application of Biomedical Engineering in Neuroscience 2019. [DOI: 10.1007/978-981-13-7142-4_1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Ahmad K, Lee EJ, Moon JS, Park SY, Choi I. Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells 2018;7:E148. [PMID: 30249008 DOI: 10.3390/cells7100148] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
41 Takahashi H, Shimizu T, Okano T. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. Sci Rep 2018;8:13932. [PMID: 30224737 DOI: 10.1038/s41598-018-32163-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
42 Jackman C, Li H, Bursac N. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Acta Biomater 2018;78:98-110. [PMID: 30086384 DOI: 10.1016/j.actbio.2018.08.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
43 Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019;198:259-69. [PMID: 30180985 DOI: 10.1016/j.biomaterials.2018.08.058] [Cited by in Crossref: 80] [Cited by in F6Publishing: 66] [Article Influence: 16.0] [Reference Citation Analysis]
44 Maleiner B, Tomasch J, Heher P, Spadiut O, Rünzler D, Fuchs C. The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Front Physiol 2018;9:1130. [PMID: 30246791 DOI: 10.3389/fphys.2018.01130] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
45 Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018;7:e1701498. [PMID: 29696831 DOI: 10.1002/adhm.201701498] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 10.0] [Reference Citation Analysis]
46 Gorecka A, Salemi S, Haralampieva D, Moalli F, Stroka D, Candinas D, Eberli D, Brügger L. Autologous transplantation of adipose-derived stem cells improves functional recovery of skeletal muscle without direct participation in new myofiber formation. Stem Cell Res Ther 2018;9:195. [PMID: 30016973 DOI: 10.1186/s13287-018-0922-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
47 Arab W, Rauf S, Al-Harbi O, Hauser CAE. Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells. Int J Bioprint 2018;4:129. [PMID: 33102913 DOI: 10.18063/IJB.v4i2.129] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Beldjilali-Labro M, Garcia Garcia A, Farhat F, Bedoui F, Grosset JF, Dufresne M, Legallais C. Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. Materials (Basel) 2018;11:E1116. [PMID: 29966303 DOI: 10.3390/ma11071116] [Cited by in Crossref: 78] [Cited by in F6Publishing: 85] [Article Influence: 15.6] [Reference Citation Analysis]
49 Avin KG, Vallejo JA, Chen NX, Wang K, Touchberry CD, Brotto M, Dallas SL, Moe SM, Wacker MJ. Fibroblast growth factor 23 does not directly influence skeletal muscle cell proliferation and differentiation or ex vivo muscle contractility. Am J Physiol Endocrinol Metab 2018;315:E594-604. [PMID: 29558205 DOI: 10.1152/ajpendo.00343.2017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
50 Nowak E, Gawor M, Ciemerych MA, Zimowska M. Silencing of gelatinase expression delays myoblast differentiation in vitro: MMPs during myoblast differentiation. Cell Biol Int 2018;42:373-82. [DOI: 10.1002/cbin.10914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
51 Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME, Bursac N. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 2017;8:1825. [PMID: 29184059 DOI: 10.1038/s41467-017-01946-x] [Cited by in Crossref: 246] [Cited by in F6Publishing: 254] [Article Influence: 41.0] [Reference Citation Analysis]
52 Costantini M, Testa S, Mozetic P, Barbetta A, Fuoco C, Fornetti E, Tamiro F, Bernardini S, Jaroszewicz J, Święszkowski W, Trombetta M, Castagnoli L, Seliktar D, Garstecki P, Cesareni G, Cannata S, Rainer A, Gargioli C. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 2017;131:98-110. [DOI: 10.1016/j.biomaterials.2017.03.026] [Cited by in Crossref: 192] [Cited by in F6Publishing: 155] [Article Influence: 32.0] [Reference Citation Analysis]
53 Li Y, Asfour H, Bursac N. Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomater 2017;55:120-30. [PMID: 28455218 DOI: 10.1016/j.actbio.2017.04.027] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 9.7] [Reference Citation Analysis]
54 Xu Q, Shanti RM, Zhang Q, Cannady SB, O'Malley BW Jr, Le AD. A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue. Tissue Eng Part A 2017;23:301-12. [PMID: 27923325 DOI: 10.1089/ten.TEA.2016.0342] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
55 Tetsi L, Charles AL, Paradis S, Lejay A, Talha S, Geny B, Lugnier C. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions. Cell Mol Life Sci 2017;74:1883-93. [PMID: 28039524 DOI: 10.1007/s00018-016-2446-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]