BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang F, Kong D, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: from bench to bedside. Cell Mol Life Sci 2013;70:259-76. [DOI: 10.1007/s00018-012-1046-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Zheng L, Zhao Z, Lin J, Li H, Wu G, Qi X, Lou X, Bao Y, Huo H, Luo M. Telmisartan relieves liver fibrosis and portal hypertension by improving vascular remodeling and sinusoidal dysfunction. European Journal of Pharmacology 2022;915:174713. [DOI: 10.1016/j.ejphar.2021.174713] [Reference Citation Analysis]
2 Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021;81:419-43. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Choi Y, Oh ST, Won M, Choi KM, Ko MJ, Seo D, Jeon T, Baik IH, Ye S, Park KU, Park I, Jang B, Seo J, Lee Y. Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications 2016;478:1674-81. [DOI: 10.1016/j.bbrc.2016.09.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
4 Pan M, Guan Z, Reinach PS, Kang L, Cao Y, Zhou D, Srinivasalu N, Zhao F, Qu J, Zhou X. PPARγ modulates refractive development and form deprivation myopia in Guinea pigs. Exp Eye Res 2021;202:108332. [PMID: 33152389 DOI: 10.1016/j.exer.2020.108332] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Wei Z, Zhao D, Zhang Y, Chen Y, Zhang S, Li Q, Zeng P, Li X, Zhang W, Duan Y, Han J, Yang X. Rosiglitazone ameliorates bile duct ligation-induced liver fibrosis by down-regulating NF-κB-TNF-α signaling pathway in a PPARγ-dependent manner. Biochem Biophys Res Commun 2019;519:854-60. [PMID: 31561855 DOI: 10.1016/j.bbrc.2019.09.084] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhang F, Lu C, Xu W, Shao J, Wu L, Lu Y, Zheng S. Curcumin raises lipid content by Wnt pathway in hepatic stellate cell. J Surg Res 2016;200:460-6. [PMID: 26414021 DOI: 10.1016/j.jss.2015.08.040] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
7 Wu K, Yang Y, Liu D, Qi Y, Zhang C, Zhao J, Zhao S. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget 2016;7:44572-82. [PMID: 27323819 DOI: 10.18632/oncotarget.10067] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
8 Dias HB, Krause GC, Squizani ED, Lima KG, Schuster AD, Pedrazza L, Basso BDS, Martha BA, de Mesquita FC, Nunes FB, Donadio MVF, de Oliveira JR. Fructose-1,6-bisphosphate reverts iron-induced phenotype of hepatic stellate cells by chelating ferrous ions. Biometals 2017;30:549-58. [DOI: 10.1007/s10534-017-0025-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
9 Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie. 2013;95:2326-2335. [PMID: 24036368 DOI: 10.1016/j.biochi.2013.09.003] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 7.8] [Reference Citation Analysis]
10 Monroy-Ramirez HC, Galicia-Moreno M, Sandoval-Rodriguez A, Meza-Rios A, Santos A, Armendariz-Borunda J. PPARs as Metabolic Sensors and Therapeutic Targets in Liver Diseases. Int J Mol Sci 2021;22:8298. [PMID: 34361064 DOI: 10.3390/ijms22158298] [Reference Citation Analysis]
11 Lee YH, Seo D, Choi KJ, Andersen JB, Won MA, Kitade M, Gómez-Quiroz LE, Judge AD, Marquardt JU, Raggi C, Conner EA, MacLachlan I, Factor VM, Thorgeirsson SS. Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res 2014;74:4752-61. [PMID: 24958469 DOI: 10.1158/0008-5472.CAN-13-3531] [Cited by in Crossref: 50] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
12 Königshofer P, Brusilovskaya K, Petrenko O, Hofer BS, Schwabl P, Trauner M, Reiberger T. Nuclear Receptors in Liver Fibrosis. Biochim Biophys Acta Mol Basis Dis 2021;:166235. [PMID: 34339839 DOI: 10.1016/j.bbadis.2021.166235] [Reference Citation Analysis]
13 Afonso MB, Rodrigues PM, Mateus-Pinheiro M, Simão AL, Gaspar MM, Majdi A, Arretxe E, Alonso C, Santos-Laso A, Jimenez-Agüero R, Eizaguirre E, Bujanda L, Pareja MJ, Banales JM, Ratziu V, Gautheron J, Castro RE, Rodrigues CMP. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut 2021;70:2359-72. [PMID: 33361348 DOI: 10.1136/gutjnl-2020-321767] [Reference Citation Analysis]
14 Zhang Z, Zhang F, Lu Y, Zheng S. Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res 2015;45:162-78. [PMID: 25196587 DOI: 10.1111/hepr.12415] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
15 Li J, Guo C, Wu J. The Agonists of Peroxisome Proliferator-Activated Receptor-γ for Liver Fibrosis. Drug Des Devel Ther 2021;15:2619-28. [PMID: 34168433 DOI: 10.2147/DDDT.S310163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ribera J, Vilches C, Sanz V, de Miguel I, Portolés I, Córdoba-Jover B, Prat E, Nunes V, Jiménez W, Quidant R, Morales-Ruiz M. Treatment of Hepatic Fibrosis in Mice Based on Targeted Plasmonic Hyperthermia. ACS Nano 2021;15:7547-62. [PMID: 33720693 DOI: 10.1021/acsnano.1c00988] [Reference Citation Analysis]
17 Yen FS, Wei JC, Chiu LT, Hsu CC, Hou MC, Hwu CM. Thiazolidinediones were associated with higher risk of cardiovascular events in patients with type 2 diabetes and cirrhosis. Liver Int 2021;41:110-22. [PMID: 33124143 DOI: 10.1111/liv.14714] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 de Conti A, Tryndyak V, Churchwell MI, Melnyk S, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver. Toxicology 2014;325:12-20. [PMID: 25123088 DOI: 10.1016/j.tox.2014.08.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
19 Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ Antagonizes Hypoxia-Induced Activation of Hepatic Stellate Cell through Cross Mediating PI3K/AKT and cGMP/PKG Signaling. PPAR Res 2018;2018:6970407. [PMID: 29686697 DOI: 10.1155/2018/6970407] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
20 He J, Bai K, Hong B, Zhang F, Zheng S. Docosahexaenoic acid attenuates carbon tetrachloride-induced hepatic fibrosis in rats. Int Immunopharmacol 2017;53:56-62. [PMID: 29035816 DOI: 10.1016/j.intimp.2017.09.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
21 Deng Y, Zhao L, Lu X. A multidrug cocktail approach attenuates ischemic-type biliary lesions in liver transplantation from non-heart-beating donors. Medical Hypotheses 2016;91:47-52. [DOI: 10.1016/j.mehy.2016.04.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
22 Bu FT, Chen Y, Yu HX, Chen X, Yang Y, Pan XY, Wang Q, Wu YT, Huang C, Meng XM, Li J. SENP2 alleviates CCl4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicol Lett 2018;289:86-98. [PMID: 29535048 DOI: 10.1016/j.toxlet.2018.03.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
23 Greenhalgh SN, Conroy KP, Henderson NC. Healing scars: targeting pericytes to treat fibrosis. QJM 2015;108:3-7. [PMID: 24659747 DOI: 10.1093/qjmed/hcu067] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
24 Han X, Wu Y, Yang Q, Cao G. Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol Ther 2021;222:107791. [PMID: 33321113 DOI: 10.1016/j.pharmthera.2020.107791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
25 Bucolo C, Drago F, Salomone S. Potential drug mechanism(s) targeting the contractile status of hepatic stellate cells. Front Pharmacol 2012;3:187. [PMID: 23125834 DOI: 10.3389/fphar.2012.00187] [Reference Citation Analysis]
26 Liu N, Feng J, Lu X, Yao Z, Liu Q, Lv Y, Han Y, Deng J, Zhou Y. Isorhamnetin Inhibits Liver Fibrosis by Reducing Autophagy and Inhibiting Extracellular Matrix Formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK Pathways. Mediators Inflamm 2019;2019:6175091. [PMID: 31467486 DOI: 10.1155/2019/6175091] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
27 Xing X, Chen S, Li L, Cao Y, Chen L, Wang X, Zhu Z. The Active Components of Fuzheng Huayu Formula and Their Potential Mechanism of Action in Inhibiting the Hepatic Stellate Cells Viability - A Network Pharmacology and Transcriptomics Approach. Front Pharmacol 2018;9:525. [PMID: 29881350 DOI: 10.3389/fphar.2018.00525] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
28 Kong DS, Zhang F, Qiu P, Zheng SZ. Role and mechanisms of DNA methylation in liver diseases. Shijie Huaren Xiaohua Zazhi 2014; 22(21): 3041-3047 [DOI: 10.11569/wcjd.v22.i21.3041] [Reference Citation Analysis]
29 Lian N, Jin H, Zhang F, Wu L, Shao J, Lu Y, Zheng S. Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphate-activated protein kinase: Curcumin inhibits aerobic glycolysis in HSCs. IUBMB Life 2016;68:589-96. [DOI: 10.1002/iub.1518] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
30 Lian N, Li T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed Pharmacother 2016;84:42-50. [PMID: 27636511 DOI: 10.1016/j.biopha.2016.09.010] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
31 Chen RJ, Wu HH, Wang YJ. Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol. 2015;89:1727-1750. [PMID: 25963329 DOI: 10.1007/s00204-015-1525-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
32 Berthier A, Johanns M, Zummo FP, Lefebvre P, Staels B. PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021;1867:166097. [PMID: 33524529 DOI: 10.1016/j.bbadis.2021.166097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhang F, Zhang Z, Chen L, Kong D, Zhang X, Lu C, Lu Y, Zheng S. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J Cell Mol Med 2014;18:1392-406. [PMID: 24779927 DOI: 10.1111/jcmm.12286] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 11.3] [Reference Citation Analysis]
34 Torday JS. A central theory of biology. Med Hypotheses 2015;85:49-57. [PMID: 25911556 DOI: 10.1016/j.mehy.2015.03.019] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
35 Yang H, Zhang L, Chen J, Zhang X, Zhao Z, Zhao L, Gu C. Heme Oxygenase-1 Inhibits the Proliferation of Hepatic Stellate Cells by Activating PPARγ and Suppressing NF-κB. Computational and Mathematical Methods in Medicine 2022;2022:1-10. [DOI: 10.1155/2022/8920861] [Reference Citation Analysis]
36 Poilil Surendran S, George Thomas R, Moon MJ, Jeong YY. Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine. 2017;12:6997-7006. [PMID: 29033567 DOI: 10.2147/ijn.s145951] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 7.4] [Reference Citation Analysis]
37 Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 2014; 20(23): 7242-7251 [PMID: 24966595 DOI: 10.3748/wjg.v20.i23.7242] [Cited by in CrossRef: 52] [Cited by in F6Publishing: 50] [Article Influence: 6.5] [Reference Citation Analysis]
38 Sferra R, Vetuschi A, Pompili S, Gaudio E, Speca S, Latella G. Expression of pro-fibrotic and anti-fibrotic molecules in dimethylnitrosamine-induced hepatic fibrosis. Pathol Res Pract 2017;213:58-65. [PMID: 27894619 DOI: 10.1016/j.prp.2016.11.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020;24:2736-48. [PMID: 32031298 DOI: 10.1111/jcmm.15028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
40 Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F, Weiskirchen R. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis. Front Pharmacol 2016;7:33. [PMID: 26941644 DOI: 10.3389/fphar.2016.00033] [Cited by in Crossref: 44] [Cited by in F6Publishing: 50] [Article Influence: 7.3] [Reference Citation Analysis]
41 Men R, Wen M, Dan X, Zhu Y, Wang W, Li J, Wu W, Liu X, Yang L. Nogo-B: A potential indicator for hepatic cirrhosis and regulator in hepatic stellate cell activation. Hepatol Res. 2015;45:113-122. [PMID: 24606149 DOI: 10.1111/hepr.12324] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
42 Li S, Mariappan N, Megyesi J, Shank B, Kannan K, Theus S, Price PM, Duffield JS, Portilla D. Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. Am J Physiol Renal Physiol 2013;305:F618-27. [PMID: 23804447 DOI: 10.1152/ajprenal.00309.2013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
43 Zhang F, Lu S, He J, Jin H, Wang F, Wu L, Shao J, Chen A, Zheng S. Ligand Activation of PPARγ by Ligustrazine Suppresses Pericyte Functions of Hepatic Stellate Cells via SMRT-Mediated Transrepression of HIF-1α. Theranostics 2018;8:610-26. [PMID: 29344293 DOI: 10.7150/thno.22237] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
44 Zhang Y, Zhan RX, Chen JQ, Gao Y, Chen L, Kong Y, Zhong XJ, Liu MQ, Chu JJ, Yan GQ, Li T, He M, Huang QR. Pharmacological activation of PPAR gamma ameliorates vascular endothelial insulin resistance via a non-canonical PPAR gamma-dependent nuclear factor-kappa B trans-repression pathway. Eur J Pharmacol 2015;754:41-51. [PMID: 25687252 DOI: 10.1016/j.ejphar.2015.02.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
45 Yen FS, Yang YC, Hwu CM, Wei JC, Huang YH, Hou MC, Hsu CC. Liver-related long-term outcomes of thiazolidinedione use in persons with type 2 diabetes. Liver Int. 2020;40:1089-1097. [PMID: 31960563 DOI: 10.1111/liv.14385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
46 Latief U, Ahmad R. Herbal remedies for liver fibrosis: A review on the mode of action of fifty herbs. J Tradit Complement Med. 2018;8:352-360. [PMID: 29992106 DOI: 10.1016/j.jtcme.2017.07.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
47 Morling JR, Fallowfield JA, Guha IN, Nee LD, Glancy S, Williamson RM, Robertson CM, Strachan MW, Price JF. Using non-invasive biomarkers to identify hepatic fibrosis in people with type 2 diabetes mellitus: The Edinburgh type 2 diabetes study. Journal of Hepatology 2014;60:384-91. [DOI: 10.1016/j.jhep.2013.10.017] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
48 Shi Z, Zhang K, Chen T, Zhang Y, Du X, Zhao Y, Shao S, Zheng L, Han T, Hong W. Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells. Cell Death Dis 2020;11:1066. [PMID: 33311456 DOI: 10.1038/s41419-020-03271-6] [Reference Citation Analysis]
49 Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomedicine & Pharmacotherapy 2021;137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Aghaei I, Hajali V, Dehpour A, Haghani M, Sheibani V, Shabani M. Alterations in the intrinsic electrophysiological properties of Purkinje neurons in a rat model of hepatic encephalopathy: Relative preventing effect of PPARγ agonist. Brain Research Bulletin 2016;121:16-25. [DOI: 10.1016/j.brainresbull.2015.12.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
51 de Oliveira da Silva B, Ramos LF, Moraes KCM. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol Int 2017;41:946-59. [PMID: 28498509 DOI: 10.1002/cbin.10790] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
52 Hasan HF, Abdel-Rafei MK, Galal SM. Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-γ expression and hampering miR-17-5p-activated canonical Wnt-β-catenin signaling. Biochem Cell Biol 2017;95:400-14. [PMID: 28177765 DOI: 10.1139/bcb-2016-0142] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
53 Chen L, Huang W, Wang L, Zhang Z, Zhang F, Zheng S, Kong D. The effects of epigenetic modification on the occurrence and progression of liver diseases and the involved mechanism. Expert Rev Gastroenterol Hepatol 2020;14:259-70. [PMID: 32124651 DOI: 10.1080/17474124.2020.1736042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Li M, Hong W, Hao C, Li L, Xu H, Li P, Xu Y. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017;1863:3202-11. [DOI: 10.1016/j.bbadis.2017.09.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
55 Elpek G&. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20(23): 7260-7276 [PMID: 24966597 DOI: 10.3748/wjg.v20.i23.7260] [Cited by in CrossRef: 173] [Cited by in F6Publishing: 156] [Article Influence: 21.6] [Reference Citation Analysis]
56 Bitencourt S, Mesquita F, Basso B, Schmid J, Ferreira G, Rizzo L, Bauer M, Bartrons R, Ventura F, Rosa JL, Mannaerts I, van Grunsven LA, Oliveira J. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells. Cell Biochem Biophys 2014;68:387-96. [PMID: 23955514 DOI: 10.1007/s12013-013-9719-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]