BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ostuni R, Zanoni I, Granucci F. Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci. 2010;67:4109-4134. [PMID: 20680392 DOI: 10.1007/s00018-010-0464-x] [Cited by in Crossref: 101] [Cited by in F6Publishing: 101] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Kabanov DS, Grachev SV, Prokhorenko IR. Monoclonal Antibody to CD14, TLR4, or CD11b: Impact of Epitope and Isotype Specificity on ROS Generation by Human Granulocytes and Monocytes. Oxid Med Cell Longev 2020;2020:5708692. [PMID: 33294123 DOI: 10.1155/2020/5708692] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Keck S, Müller I, Fejer G, Savic I, Tchaptchet S, Nielsen PJ, Galanos C, Huber M, Freudenberg MA. Absence of TRIF signaling in lipopolysaccharide-stimulated murine mast cells. J Immunol 2011;186:5478-88. [PMID: 21441453 DOI: 10.4049/jimmunol.1000458] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
3 Reiber C, Brieger A, Engelhardt G, Hebel S, Rink L, Haase H. Zinc chelation decreases IFN-β-induced STAT1 upregulation and iNOS expression in RAW 264.7 macrophages. Journal of Trace Elements in Medicine and Biology 2017;44:76-82. [DOI: 10.1016/j.jtemb.2017.05.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
4 Gesuete R, Kohama SG, Stenzel-Poore MP. Toll-like receptors and ischemic brain injury. J Neuropathol Exp Neurol 2014;73:378-86. [PMID: 24709682 DOI: 10.1097/NEN.0000000000000068] [Cited by in Crossref: 66] [Cited by in F6Publishing: 32] [Article Influence: 9.4] [Reference Citation Analysis]
5 El Hokayem J, Brittain GC 4th, Nawaz Z, Bethea JR. Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells. Mol Neurobiol 2017;54:1301-13. [PMID: 26843107 DOI: 10.1007/s12035-016-9742-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
6 Blumhagen RZ, Hedin BR, Malcolm KC, Burnham EL, Moss M, Abraham E, Huie TJ, Nick JA, Fingerlin TE, Alper S. Alternative pre-mRNA splicing of Toll-like receptor signaling components in peripheral blood mononuclear cells from patients with ARDS. Am J Physiol Lung Cell Mol Physiol 2017;313:L930-9. [PMID: 28775099 DOI: 10.1152/ajplung.00247.2017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
7 Goh FG, Midwood KS. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 2012;51:7-23. [PMID: 21984766 DOI: 10.1093/rheumatology/ker257] [Cited by in Crossref: 101] [Cited by in F6Publishing: 98] [Article Influence: 10.1] [Reference Citation Analysis]
8 Yan X, Zhao X, Huo R, Xu T. IRF3 and IRF8 Regulate NF-κB Signaling by Targeting MyD88 in Teleost Fish. Front Immunol 2020;11:606. [PMID: 32373114 DOI: 10.3389/fimmu.2020.00606] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
9 Shah JA, Vary JC, Chau TT, Bang ND, Yen NT, Farrar JJ, Dunstan SJ, Hawn TR. Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J Immunol 2012;189:1737-46. [PMID: 22778396 DOI: 10.4049/jimmunol.1103541] [Cited by in Crossref: 80] [Cited by in F6Publishing: 75] [Article Influence: 8.9] [Reference Citation Analysis]
10 Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. Biochim Biophys Acta 2015;1848:1860-7. [PMID: 25797518 DOI: 10.1016/j.bbamem.2015.03.014] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 9.8] [Reference Citation Analysis]
11 Lonez C, Vandenbranden M, Ruysschaert J. Cationic lipids activate intracellular signaling pathways. Advanced Drug Delivery Reviews 2012;64:1749-58. [DOI: 10.1016/j.addr.2012.05.009] [Cited by in Crossref: 124] [Cited by in F6Publishing: 124] [Article Influence: 13.8] [Reference Citation Analysis]
12 Dörpinghaus M, Brieger A, Panichkina O, Rink L, Haase H. Lead ions abrogate lipopolysaccharide-induced nitric monoxide toxicity by reducing the expression of STAT1 and iNOS. Journal of Trace Elements in Medicine and Biology 2016;37:117-24. [DOI: 10.1016/j.jtemb.2016.04.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
13 Gao H, Dai W, Zhao L, Min J, Wang F. The Role of Zinc and Zinc Homeostasis in Macrophage Function. J Immunol Res 2018;2018:6872621. [PMID: 30622979 DOI: 10.1155/2018/6872621] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 13.7] [Reference Citation Analysis]
14 Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood 2012;120:1380-9. [PMID: 22611159 DOI: 10.1182/blood-2012-02-404475] [Cited by in Crossref: 143] [Cited by in F6Publishing: 142] [Article Influence: 15.9] [Reference Citation Analysis]
15 Li N, Katz S, Dutta B, Benet ZL, Sun J, Fraser ID. Genome-wide siRNA screen of genes regulating the LPS-induced NF-κB and TNF-α responses in mouse macrophages. Sci Data 2017;4:170008. [PMID: 28248925 DOI: 10.1038/sdata.2017.8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Gonçalves-de-Albuquerque CF, Burth P, Silva AR, Younes-Ibrahim M, Castro-Faria-Neto HC, Castro-Faria MV. Leptospira and inflammation. Mediators Inflamm 2012;2012:317950. [PMID: 23132959 DOI: 10.1155/2012/317950] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
17 Krivan S, Kapelouzou A, Vagios S, Tsilimigras DI, Katsimpoulas M, Moris D, Aravanis CV, Demesticha TD, Schizas D, Mavroidis M, Pavlakis K, Machairas A, Misiakos E, Liakakos T. Increased expression of Toll-like receptors 2, 3, 4 and 7 mRNA in the kidney and intestine of a septic mouse model. Sci Rep 2019;9:4010. [PMID: 30850654 DOI: 10.1038/s41598-019-40537-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Virzì GM, Clementi A, Brocca A, Ronco C. Endotoxin Effects on Cardiac and Renal Functions and Cardiorenal Syndromes. Blood Purif 2017;44:314-26. [PMID: 29161706 DOI: 10.1159/000480424] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Jongstra-Bilen J, Zhang CX, Wisnicki T, Li MK, White-Alfred S, Ilaalagan R, Ferri DM, Deonarain A, Wan MH, Hyduk SJ, Cummins CL, Cybulsky MI. Oxidized Low-Density Lipoprotein Loading of Macrophages Downregulates TLR-Induced Proinflammatory Responses in a Gene-Specific and Temporal Manner through Transcriptional Control. J Immunol 2017;199:2149-57. [PMID: 28784845 DOI: 10.4049/jimmunol.1601363] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
20 Sun J, Katz S, Dutta B, Wang Z, Fraser ID. Genome-wide siRNA screen of genes regulating the LPS-induced TNF-α response in human macrophages. Sci Data 2017;4:170007. [PMID: 28248930 DOI: 10.1038/sdata.2017.7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 Anand PK. Lipids, inflammasomes, metabolism, and disease. Immunol Rev 2020;297:108-22. [PMID: 32562313 DOI: 10.1111/imr.12891] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
22 Zanoni I, Tan Y, Di Gioia M, Springstead JR, Kagan JC. By Capturing Inflammatory Lipids Released from Dying Cells, the Receptor CD14 Induces Inflammasome-Dependent Phagocyte Hyperactivation. Immunity 2017;47:697-709.e3. [PMID: 29045901 DOI: 10.1016/j.immuni.2017.09.010] [Cited by in Crossref: 79] [Cited by in F6Publishing: 76] [Article Influence: 19.8] [Reference Citation Analysis]
23 Cai J, Xia H, Huang Y, Tang J, Jian J, Wu Z, Lu Y. Identification and characterization of tumor necrosis factor receptor (TNFR)-associated factor 3 from humphead snapper, Lutjanus sanguineus. Fish Shellfish Immunol 2015;46:243-51. [PMID: 26108034 DOI: 10.1016/j.fsi.2015.06.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
24 Tamtaji OR, Mobini M, Reiter RJ, Azami A, Gholami MS, Asemi Z. Melatonin, a toll-like receptor inhibitor: Current status and future perspectives. J Cell Physiol 2019;234:7788-95. [PMID: 30387141 DOI: 10.1002/jcp.27698] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
25 Tajalli-Nezhad S, Karimian M, Beyer C, Atlasi MA, Azami Tameh A. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci 2019;76:523-37. [PMID: 30377701 DOI: 10.1007/s00018-018-2953-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
26 Miller AH, Vayttaden SJ, Al-Khodor S, Fraser ID. Assay Development for Image-Based Quantification of Intracellular Bacterial Replication and Analysis of the Innate Immune Response to Infection. Assay Drug Dev Technol 2015;13:515-28. [PMID: 26505731 DOI: 10.1089/adt.2015.664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
27 McIsaac SM, Stadnyk AW, Lin TJ. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J Leukoc Biol 2012;92:977-85. [PMID: 22892106 DOI: 10.1189/jlb.0811410] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
28 Vrančić M, Banjanac M, Nujić K, Bosnar M, Murati T, Munić V, Stupin Polančec D, Belamarić D, Parnham MJ, Eraković Haber V. Azithromycin distinctively modulates classical activation of human monocytes in vitro. Br J Pharmacol 2012;165:1348-60. [PMID: 21726210 DOI: 10.1111/j.1476-5381.2011.01576.x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 6.7] [Reference Citation Analysis]
29 Janssen WJ, Danhorn T, Harris C, Mould KJ, Lee FF, Hedin BR, D'Alessandro A, Leach SM, Alper S. Inflammation-Induced Alternative Pre-mRNA Splicing in Mouse Alveolar Macrophages. G3 (Bethesda) 2020;10:555-67. [PMID: 31810980 DOI: 10.1534/g3.119.400935] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
30 Carrouel F, Staquet M, Keller J, Baudouin C, Msika P, Bleicher F, Alliot-licht B, Farges J. Lipopolysaccharide-binding Protein Inhibits Toll-like Receptor 2 Activation by Lipoteichoic Acid in Human Odontoblast-like Cells. Journal of Endodontics 2013;39:1008-14. [DOI: 10.1016/j.joen.2013.04.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
31 Egunsola AT, Zawislak CL, Akuffo AA, Chalmers SA, Ewer JC, Vail CM, Lombardo JC, Perez DN, Kurt RA. Growth, metastasis, and expression of CCL2 and CCL5 by murine mammary carcinomas are dependent upon Myd88. Cell Immunol 2012;272:220-9. [PMID: 22088941 DOI: 10.1016/j.cellimm.2011.10.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
32 Yang D, Song H, Xu W, Long H, Shi C, Jing Z, Song W, Pei B. Interleukin 4-590T/C polymorphism and susceptibility to leprosy. Genet Test Mol Biomarkers 2011;15:877-81. [PMID: 21749213 DOI: 10.1089/gtmb.2011.0032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
33 Racioppi L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med 2013;19:83-8. [PMID: 23332598 DOI: 10.1016/j.molmed.2012.12.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
34 Sjoelund V, Smelkinson M, Nita-Lazar A. Phosphoproteome profiling of the macrophage response to different toll-like receptor ligands identifies differences in global phosphorylation dynamics. J Proteome Res 2014;13:5185-97. [PMID: 24941444 DOI: 10.1021/pr5002466] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
35 Hancock DG, Shklovskaya E, Guy TV, Falsafi R, Fjell CD, Ritchie W, Hancock RE, Fazekas de St Groth B. A systems biology approach to the analysis of subset-specific responses to lipopolysaccharide in dendritic cells. PLoS One 2014;9:e100613. [PMID: 24949855 DOI: 10.1371/journal.pone.0100613] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
36 Oudshoorn D, Versteeg GA, Kikkert M. Regulation of the innate immune system by ubiquitin and ubiquitin-like modifiers. Cytokine Growth Factor Rev. 2012;23:273-282. [PMID: 22964110 DOI: 10.1016/j.cytogfr.2012.08.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
37 LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021;13:3079. [PMID: 34203106 DOI: 10.3390/cancers13123079] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Pizzuto M, Lonez C, Baroja-Mazo A, Martínez-Banaclocha H, Tourlomousis P, Gangloff M, Pelegrin P, Ruysschaert JM, Gay NJ, Bryant CE. Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cell Mol Life Sci 2019;76:3667-78. [PMID: 31062071 DOI: 10.1007/s00018-019-03113-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
39 Wang S, Xiang D, Tian F, Ni M. Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. J Med Microbiol 2021;70. [PMID: 33909550 DOI: 10.1099/jmm.0.001352] [Reference Citation Analysis]
40 Deng S, Li G, Zhang J, Zhang X, Cui M, Guo Y, Liu G, Li G, Feng J, Lian Z. Transgenic cloned sheep overexpressing ovine toll-like receptor 4. Theriogenology 2013;80:50-7. [PMID: 23623352 DOI: 10.1016/j.theriogenology.2013.03.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
41 Carty M, Bowie AG. Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochem Pharmacol 2011;81:825-37. [PMID: 21241665 DOI: 10.1016/j.bcp.2011.01.003] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 9.3] [Reference Citation Analysis]
42 Li M, Liu J, Bi Y, Chen J, Zhao L. Potential Medications or Compounds Acting on Toll-like Receptors in Cerebral Ischemia. Curr Neuropharmacol 2018;16:160-75. [PMID: 28571545 DOI: 10.2174/1570159X15666170601125139] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
43 Wall VZ, Barnhart S, Kramer F, Kanter JE, Vivekanandan-Giri A, Pennathur S, Bolego C, Ellis JM, Gijón MA, Wolfgang MJ, Bornfeldt KE. Inflammatory stimuli induce acyl-CoA thioesterase 7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages. J Lipid Res 2017;58:1174-85. [PMID: 28416579 DOI: 10.1194/jlr.M076489] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
44 Lonez C, Irvine KL, Pizzuto M, Schmidt BI, Gay NJ, Ruysschaert JM, Gangloff M, Bryant CE. Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cell Mol Life Sci 2015;72:3971-82. [PMID: 25956320 DOI: 10.1007/s00018-015-1915-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
45 Liu MW, Wang YH, Qian CY, Li H. Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating Toll-interacting protein expression in rats with sepsis. Int J Mol Med 2014;34:1492-504. [PMID: 25269519 DOI: 10.3892/ijmm.2014.1943] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
46 Wang J, Chen Z, Hou S, Liu Z, Lv Q. TAK-242 Attenuates Crush Injury Induced Acute Kidney Injury through Inhibiting TLR4/NF-κB Signaling Pathways in Rats. Prehosp Disaster Med 2020;35:619-28. [PMID: 32967743 DOI: 10.1017/S1049023X20001132] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Dhillon B, Aleithan F, Abdul-Sater Z, Abdul-Sater AA. The Evolving Role of TRAFs in Mediating Inflammatory Responses. Front Immunol 2019;10:104. [PMID: 30778351 DOI: 10.3389/fimmu.2019.00104] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
48 Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem 2012;287:11579-91. [PMID: 22334678 DOI: 10.1074/jbc.M111.336032] [Cited by in Crossref: 67] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
49 Joshi AD, Dimitropoulou C, Thangjam G, Snead C, Feldman S, Barabutis N, Fulton D, Hou Y, Kumar S, Patel V, Gorshkov B, Verin AD, Black SM, Catravas JD. Heat shock protein 90 inhibitors prevent LPS-induced endothelial barrier dysfunction by disrupting RhoA signaling. Am J Respir Cell Mol Biol 2014;50:170-9. [PMID: 23972231 DOI: 10.1165/rcmb.2012-0496OC] [Cited by in Crossref: 8] [Cited by in F6Publishing: 34] [Article Influence: 1.1] [Reference Citation Analysis]
50 Alquraini A, Garguilo S, D'Souza G, Zhang LX, Schmidt TA, Jay GD, Elsaid KA. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther 2015;17:353. [PMID: 26643105 DOI: 10.1186/s13075-015-0877-x] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 9.0] [Reference Citation Analysis]
51 Xie H, Zhou H, Wang H, Chen D, Xia L, Wang T, Yan J. Anti-β(2)GPI/β(2)GPI induced TF and TNF-α expression in monocytes involving both TLR4/MyD88 and TLR4/TRIF signaling pathways. Mol Immunol 2013;53:246-54. [PMID: 22964479 DOI: 10.1016/j.molimm.2012.08.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
52 Xuan NT, Wang X, Nishanth G, Waisman A, Borucki K, Isermann B, Naumann M, Deckert M, Schlüter D. A20 expression in dendritic cells protects mice from LPS-induced mortality. Eur J Immunol. 2015;45:818-828. [PMID: 25472594 DOI: 10.1002/eji.201444795] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
53 Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2020;11:622614. [PMID: 33679711 DOI: 10.3389/fimmu.2020.622614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
54 Chen J, Matzuk MM, Zhou XJ, Lu CY. Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury. Kidney Int 2012;82:1195-207. [PMID: 22895517 DOI: 10.1038/ki.2012.268] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
55 Wang D, Zhao S, Pan J, Wang Z, Li Y, Xu X, Yang J, Zhang X, Wang Y, Liu M. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol 2021;236:2144-55. [PMID: 32761843 DOI: 10.1002/jcp.30001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
56 Podda G, Nyirenda M, Crooks J, Gran B. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol. 2013;8:791-806. [PMID: 23812895 DOI: 10.1007/s11481-013-9483-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
57 Esparza GA, Teghanemt A, Zhang D, Gioannini TL, Weiss JP. Endotoxin{middle dot}albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4. Innate Immun 2012;18:478-91. [PMID: 21994253 DOI: 10.1177/1753425911422723] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
58 Spadaro M, Montone M, Arigoni M, Cantarella D, Forni G, Pericle F, Pascolo S, Calogero RA, Cavallo F. Recombinant human lactoferrin induces human and mouse dendritic cell maturation via Toll-like receptors 2 and 4. FASEB J 2014;28:416-29. [PMID: 24088817 DOI: 10.1096/fj.13-229591] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
59 Van Braeckel-Budimir N, Haijema BJ, Leenhouts K. Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front Immunol 2013;4:282. [PMID: 24062748 DOI: 10.3389/fimmu.2013.00282] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 4.6] [Reference Citation Analysis]
60 Yang L, Carrillo M, Wu YM, DiAngelo SL, Silveyra P, Umstead TM, Halstead ES, Davies ML, Hu S, Floros J, McCormack FX, Christensen ND, Chroneos ZC. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015;10:e0126576. [PMID: 25965346 DOI: 10.1371/journal.pone.0126576] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
61 Lee FF, Davidson K, Harris C, McClendon J, Janssen WJ, Alper S. NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages. J Biol Chem 2020;295:6236-48. [PMID: 32179652 DOI: 10.1074/jbc.RA119.011495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
62 Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun 2014;5:3039. [PMID: 24423728 DOI: 10.1038/ncomms4039] [Cited by in Crossref: 87] [Cited by in F6Publishing: 93] [Article Influence: 14.5] [Reference Citation Analysis]
63 Yu L, Phillips RL, Zhang D, Teghanemt A, Weiss JP, Gioannini TL. NMR studies of hexaacylated endotoxin bound to wild-type and F126A mutant MD-2 and MD-2·TLR4 ectodomain complexes. J Biol Chem 2012;287:16346-55. [PMID: 22433852 DOI: 10.1074/jbc.M112.343467] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
64 Barminko J, Gray A, Maguire T, Schloss R, Yarmush ML. Mesenchymal Stromal Cell Mechanisms of Immunomodulation and Homing. In: Chase LG, Vemuri MC, editors. Mesenchymal Stem Cell Therapy. Totowa: Humana Press; 2013. pp. 15-38. [DOI: 10.1007/978-1-62703-200-1_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
65 Marongiu L, Mingozzi F, Cigni C, Marzi R, Di Gioia M, Garrè M, Parazzoli D, Sironi L, Collini M, Sakaguchi R, Morii T, Crosti M, Moro M, Schurmans S, Catelani T, Rotem R, Colombo M, Shears S, Prosperi D, Zanoni I, Granucci F. Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca2+ mobilization and the inflammatory activity of dendritic cells. Sci Signal 2021;14:eaaz2120. [PMID: 33785611 DOI: 10.1126/scisignal.aaz2120] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
66 Kabanov DS, Vwedenskaya OY, Fokina MA, Morozova EM, Grachev SV, Prokhorenko IR. Impact of CD14 on Reactive Oxygen Species Production from Human Leukocytes Primed by Escherichia coli Lipopolysaccharides. Oxid Med Cell Longev 2019;2019:6043245. [PMID: 30944694 DOI: 10.1155/2019/6043245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Smith JA, Stallons LJ, Collier JB, Chavin KD, Schnellmann RG. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J Pharmacol Exp Ther 2015;352:346-57. [PMID: 25503387 DOI: 10.1124/jpet.114.221085] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 7.6] [Reference Citation Analysis]
68 Ghosh M, Shen Z, Fahey JV, Crist SG, Patel M, Smith JM, Wira CR. Pathogen recognition in the human female reproductive tract: expression of intracellular cytosolic sensors NOD1, NOD2, RIG-1, and MDA5 and response to HIV-1 and Neisseria gonorrhea. Am J Reprod Immunol 2013;69:41-51. [PMID: 22984986 DOI: 10.1111/aji.12019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
69 Zanoni I, Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol. 2013;3:32. [PMID: 23898465 DOI: 10.3389/fcimb.2013.00032] [Cited by in Crossref: 99] [Cited by in F6Publishing: 99] [Article Influence: 12.4] [Reference Citation Analysis]
70 Gurkan S, Cabinian A, Lopez V, Bhaumik M, Chang JM, Rabson AB, Mundel P. Inhibition of type I interferon signalling prevents TLR ligand-mediated proteinuria. J Pathol 2013;231:248-56. [PMID: 24151637 DOI: 10.1002/path.4235] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
71 Sun J, Li N, Oh KS, Dutta B, Vayttaden SJ, Lin B, Ebert TS, De Nardo D, Davis J, Bagirzadeh R, Lounsbury NW, Pasare C, Latz E, Hornung V, Fraser ID. Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Sci Signal 2016;9:ra3. [PMID: 26732763 DOI: 10.1126/scisignal.aab2191] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 8.4] [Reference Citation Analysis]
72 Li N, Sun J, Benet ZL, Wang Z, Al-Khodor S, John SP, Lin B, Sung MH, Fraser ID. Development of a cell system for siRNA screening of pathogen responses in human and mouse macrophages. Sci Rep 2015;5:9559. [PMID: 25831078 DOI: 10.1038/srep09559] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
73 Zhou H, Sheng L, Wang H, Xie H, Mu Y, Wang T, Yan J. Anti-β2GPI/β2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-κB signaling pathways. Thromb Res 2013;132:742-9. [PMID: 24157085 DOI: 10.1016/j.thromres.2013.09.039] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
74 Cauvi DM, Song D, Vazquez DE, Hawisher D, Bermudez JA, Williams MR, Bickler S, Coimbra R, De Maio A. Period of irreversible therapeutic intervention during sepsis correlates with phase of innate immune dysfunction. J Biol Chem 2012;287:19804-15. [PMID: 22518839 DOI: 10.1074/jbc.M112.359562] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
75 Kaur T, Nafissi N, Wasfi O, Sheldon K, Wettig S, Slavcev R. Immunocompatibility of Bacteriophages as Nanomedicines. Journal of Nanotechnology 2012;2012:1-13. [DOI: 10.1155/2012/247427] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
76 Pone EJ, Xu Z, White CA, Zan H, Casali P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci (Landmark Ed) 2012;17:2594-615. [PMID: 22652800 DOI: 10.2741/4073] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
77 Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 2011;239:178-96. [PMID: 21198672 DOI: 10.1111/j.1600-065X.2010.00978.x] [Cited by in Crossref: 263] [Cited by in F6Publishing: 160] [Article Influence: 26.3] [Reference Citation Analysis]
78 Croasdell A, Sime PJ, Phipps RP. Resolvin D2 decreases TLR4 expression to mediate resolution in human monocytes. FASEB J 2016;30:3181-93. [PMID: 27256622 DOI: 10.1096/fj.201600375R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
79 van Bergenhenegouwen J, Plantinga TS, Joosten LA, Netea MG, Folkerts G, Kraneveld AD, Garssen J, Vos AP. TLR2 & amp; Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol. 2013;94:885-902. [PMID: 23990624 DOI: 10.1189/jlb.0113003] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 11.3] [Reference Citation Analysis]
80 Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, Ronco C, Fiaccadori E, Pertosa GB, Gesualdo L, Castellano G. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant . [DOI: 10.1093/ndt/gfw250] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 4.2] [Reference Citation Analysis]
81 Borrello S, Nicolò C, Delogu G, Pandolfi F, Ria F. TLR2: A Crossroads between Infections and Autoimmunity? Int J Immunopathol Pharmacol 2011;24:549-56. [DOI: 10.1177/039463201102400301] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
82 Nair A, Kanda V, Bush-Joseph C, Verma N, Chubinskaya S, Mikecz K, Glant TT, Malfait AM, Crow MK, Spear GT, Finnegan A, Scanzello CR. Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14. Arthritis Rheum 2012;64:2268-77. [PMID: 22492243 DOI: 10.1002/art.34495] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 6.7] [Reference Citation Analysis]
83 Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D, Graf D. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol 2013;94:1253-64. [PMID: 23990628 DOI: 10.1189/jlb.0812396] [Cited by in F6Publishing: 71] [Reference Citation Analysis]
84 Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal 2013;8:7. [PMID: 23758787 DOI: 10.1186/1750-2187-8-7] [Cited by in Crossref: 243] [Cited by in F6Publishing: 233] [Article Influence: 30.4] [Reference Citation Analysis]
85 Brigotti M, Carnicelli D, Arfilli V, Tamassia N, Borsetti F, Fabbri E, Tazzari PL, Ricci F, Pagliaro P, Spisni E, Cassatella MA. Identification of TLR4 as the Receptor That Recognizes Shiga Toxins in Human Neutrophils. J I 2013;191:4748-58. [DOI: 10.4049/jimmunol.1300122] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 7.1] [Reference Citation Analysis]
86 Wang X, Sun Y, Yang H, Lu Y, Li L. Oxidized Low-Density Lipoprotein Induces Apoptosis in Cultured Neonatal Rat Cardiomyocytes by Modulating the TLR4/NF-κB Pathway. Sci Rep 2016;6:27866. [PMID: 27279424 DOI: 10.1038/srep27866] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
87 Xie H, Sheng L, Zhou H, Yan J. The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity. Br J Haematol 2014;164:165-76. [DOI: 10.1111/bjh.12587] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
88 Sirskyj D, Kumar A, Azizi A. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine. Int J Mol Sci 2016;17:E1062. [PMID: 27384558 DOI: 10.3390/ijms17071062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
89 Anandaiah A, Sinha S, Bole M, Sharma SK, Kumar N, Luthra K, Li X, Zhou X, Nelson B, Han X, Tachado SD, Patel NR, Koziel H. Vitamin D rescues impaired Mycobacterium tuberculosis-mediated tumor necrosis factor release in macrophages of HIV-seropositive individuals through an enhanced Toll-like receptor signaling pathway in vitro. Infect Immun 2013;81:2-10. [PMID: 23071135 DOI: 10.1128/IAI.00666-12] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
90 Lau C, Nygård S, Fure H, Olstad OK, Holden M, Lappegård KT, Brekke OL, Espevik T, Hovig E, Mollnes TE. CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray. PLoS One 2015;10:e0117261. [PMID: 25706641 DOI: 10.1371/journal.pone.0117261] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
91 You R, Long W, Lai Z, Sha L, Wu K, Yu X, Lai Y, Ji H, Huang Z, Zhang Y. Discovery of a potential anti-inflammatory agent: 3-oxo-29-noroleana-1,9(11),12-trien-2,20-dicarbonitrile. J Med Chem 2013;56:1984-95. [PMID: 23373965 DOI: 10.1021/jm301652t] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
92 Brieger A, Rink L, Haase H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol 2013;191:1808-17. [PMID: 23863901 DOI: 10.4049/jimmunol.1301261] [Cited by in Crossref: 68] [Cited by in F6Publishing: 58] [Article Influence: 8.5] [Reference Citation Analysis]
93 Buchta CM, Bishop GA. Toll-like receptors and B cells: functions and mechanisms. Immunol Res 2014;59:12-22. [PMID: 24847763 DOI: 10.1007/s12026-014-8523-2] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 8.2] [Reference Citation Analysis]
94 Wu Z, Zhang Z, Lei Z, Lei P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev 2019;48:24-31. [PMID: 31296363 DOI: 10.1016/j.cytogfr.2019.06.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 20.0] [Reference Citation Analysis]
95 O'Connor BP, Danhorn T, De Arras L, Flatley BR, Marcus RA, Farias-Hesson E, Leach SM, Alper S. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet 2015;11:e1004932. [PMID: 25658809 DOI: 10.1371/journal.pgen.1004932] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
96 Dhanda AD, Collins PL. Immune dysfunction in acute alcoholic hepatitis. World J Gastroenterol 2015; 21(42): 11904-11913 [PMID: 26576079 DOI: 10.3748/wjg.v21.i42.11904] [Cited by in CrossRef: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
97 Zhang G, Cai Q, Zhou H, He C, Chen Y, Zhang P, Wang T, Xu L, Yan J. OxLDL/β2GPI/anti‑β2GPI Ab complex induces inflammatory activation via the TLR4/NF‑κB pathway in HUVECs. Mol Med Rep 2021;23:148. [PMID: 33355374 DOI: 10.3892/mmr.2020.11787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
98 Xu Y, Kong X, Zhou H, Zhang X, Liu J, Yan J, Xie H, Xie Y. oxLDL/β2GPI/anti-β2GPI complex induced macrophage differentiation to foam cell involving TLR4/NF-kappa B signal transduction pathway. Thromb Res. 2014;134:384-392. [PMID: 24882274 DOI: 10.1016/j.thromres.2014.05.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
99 Ostuni R, Natoli G. Transcriptional control of macrophage diversity and specialization. Eur J Immunol 2011;41:2486-90. [DOI: 10.1002/eji.201141706] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
100 Chang FM, Reyna SM, Granados JC, Wei SJ, Innis-Whitehouse W, Maffi SK, Rodriguez E, Slaga TJ, Short JD. Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells. J Biol Chem 2012;287:35756-67. [PMID: 22927439 DOI: 10.1074/jbc.M112.397703] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
101 Riddell JR, Maier P, Sass SN, Moser MT, Foster BA, Gollnick SO. Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α. PLoS One 2012;7:e50394. [PMID: 23185615 DOI: 10.1371/journal.pone.0050394] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]