BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ, Gombau L, Tsytsikova L, Canady R, Pereira DI, Lefebvre DE. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:609-622. [PMID: 25641962 DOI: 10.1002/wnan.1333] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Ude VC, Brown DM, Viale L, Kanase N, Stone V, Johnston HJ. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part Fibre Toxicol 2017;14:31. [PMID: 28835236 DOI: 10.1186/s12989-017-0211-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
2 Wang H, Zhu H, Wang X, Li E, Du Z, Qin J, Chen L. Comparison of copper bioavailability in copper-methionine, nano-copper oxide and copper sulfate additives in the diet of Russian sturgeon Acipenser gueldenstaedtii. Aquaculture 2018;482:146-54. [DOI: 10.1016/j.aquaculture.2017.09.037] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
3 de Paula Ribeiro J, Kalb AC, de Bastos Maya S, Gioda A, Martinez PE, Monserrat JM, Jiménez-vélez BD, Gioda CR. The impact of polar fraction of the fine particulate matter on redox responses in different rat tissues. Environ Sci Pollut Res 2019;26:32476-87. [DOI: 10.1007/s11356-019-06452-9] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact 2016;3-4:47-57. [PMID: 29568810 DOI: 10.1016/j.impact.2016.10.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 12.5] [Reference Citation Analysis]
5 Cui X, Bao L, Wang X, Chen C. The Nano–Intestine Interaction: Understanding the Location‐Oriented Effects of Engineered Nanomaterials in the Intestine. Small 2020;16:1907665. [DOI: 10.1002/smll.201907665] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
6 Liu H, Zeng X, Zhang G, Hou C, Li N, Yu H, Shang L, Zhang X, Trevisi P, Yang F, Liu Z, Qiao S. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol 2019;17:106. [PMID: 31852478 DOI: 10.1186/s12915-019-0729-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
7 Maestri CA, Motta A, Moschini L, Bernkop-Schnürch A, Baus RA, Lecca P, Scarpa M. Composite nanocellulose-based hydrogels with spatially oriented degradation and retarded release of macromolecules. J Biomed Mater Res A 2020;108:1509-19. [PMID: 32175650 DOI: 10.1002/jbm.a.36922] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Laloux L, Polet M, Schneider Y. Interaction between Ingested-Engineered Nanomaterials and the Gastrointestinal Tract: In Vitro Toxicology Aspects. In: Axelos MA, Van de Voorde MH, editors. Nanotechnology in Agriculture and Food Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 311-32. [DOI: 10.1002/9783527697724.ch18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
9 Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. Adv Mater 2021;33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 26.0] [Reference Citation Analysis]
10 Aguilar-Pérez KM, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight of nanotechnological processing for nano-fortified functional foods and nutraceutical-opportunities, challenges, and future scope in food for better health. Crit Rev Food Sci Nutr 2021;:1-18. [PMID: 34817310 DOI: 10.1080/10408398.2021.2004994] [Reference Citation Analysis]
11 Pei X, Jiang H, Xu G, Li C, Li D, Tang S. Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study. Int J Mol Sci 2022;23:6724. [PMID: 35743165 DOI: 10.3390/ijms23126724] [Reference Citation Analysis]
12 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Reference Citation Analysis]
13 Yusoff R, Nguyen LTH, Chiew P, Wang ZM, Ng KW. Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4176-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Di Cristo L, Oomen AG, Dekkers S, Moore C, Rocchia W, Murphy F, Johnston HJ, Janer G, Haase A, Stone V, Sabella S. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. Nanomaterials (Basel) 2021;11:2623. [PMID: 34685072 DOI: 10.3390/nano11102623] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Soopramanien M, Khan NA, Siddiqui R. Gut microbiota of animals living in polluted environments are a potential resource of anticancer molecules. J Appl Microbiol 2021;131:1039-55. [PMID: 33368930 DOI: 10.1111/jam.14981] [Reference Citation Analysis]
16 Garduño-balderas LG, Urrutia-ortega IM, Medina-reyes EI, Chirino YI. Difficulties in establishing regulations for engineered nanomaterials and considerations for policy makers: avoiding an unbalance between benefits and risks: Difficulties in establishing regulations for engineered nanomaterials. J Appl Toxicol 2015;35:1073-85. [DOI: 10.1002/jat.3180] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
17 DeLoid GM, Sohal IS, Lorente LR, Molina RM, Pyrgiotakis G, Stevanovic A, Zhang R, McClements DJ, Geitner NK, Bousfield DW, Ng KW, Loo SCJ, Bell DC, Brain J, Demokritou P. Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano 2018;12:6469-79. [PMID: 29874029 DOI: 10.1021/acsnano.8b03074] [Cited by in Crossref: 100] [Cited by in F6Publishing: 84] [Article Influence: 25.0] [Reference Citation Analysis]
18 Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R, Mosesso P, Parent-Massin D, Tobback P, Kovalkovicova N, Rincon AM, Tard A, Lambré C; EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J 2018;16:e05088. [PMID: 32625658 DOI: 10.2903/j.efsa.2018.5088] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
19 de Oliveira GR, de Andrade C, Sotomaior CS, Costa LB. Advances in nanotechnology and the benefits of using cellulose nanofibers in animal nutrition. Vet World 2021;14:2843-50. [PMID: 35017829 DOI: 10.14202/vetworld.2021.2843-2850] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lefebvre DE, Ross N, Kocmarek AL, Cowell S, Dai S, Qiao C, Curran I, Koerner T, Bondy GS, Fine JH. In vitro immunomodulation of splenocytes from DO11.10 mice by the food colouring agent amaranth. Food and Chemical Toxicology 2017;110:395-401. [DOI: 10.1016/j.fct.2017.10.041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
21 De Matteis V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics 2017;5:E29. [PMID: 29051461 DOI: 10.3390/toxics5040029] [Cited by in Crossref: 97] [Cited by in F6Publishing: 69] [Article Influence: 19.4] [Reference Citation Analysis]
22 Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018;77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 21.5] [Reference Citation Analysis]
23 Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Chaudhry Q, Cubadda F, Gott D, Oomen A, Weigel S, Karamitrou M, Schoonjans R, Mortensen A; EFSA Scientific Committee. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J 2018;16:e05327. [PMID: 32625968 DOI: 10.2903/j.efsa.2018.5327] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 14.8] [Reference Citation Analysis]
24 Groh KJ, Geueke B, Muncke J. Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol. 2017;109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
25 Zhou H, Pandya JK, Tan Y, Liu J, Peng S, Muriel Mundo JL, He L, Xiao H, McClements DJ. Role of Mucin in Behavior of Food-Grade TiO2 Nanoparticles under Simulated Oral Conditions. J Agric Food Chem 2019;67:5882-90. [PMID: 31045357 DOI: 10.1021/acs.jafc.9b01732] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
26 Bouwmeester H, van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10. [PMID: 28548289 DOI: 10.1002/wnan.1481] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
27 Naserifar M, Hosseinzadeh H, Abnous K, Mohammadi M, Taghdisi SM, Ramezani M, Alibolandi M. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci 2020;262:118555. [PMID: 33035579 DOI: 10.1016/j.lfs.2020.118555] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
28 Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018;15:759-70. [PMID: 30033780 DOI: 10.1080/17425247.2018.1504017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
29 Sharma D, Sharma N, Pathak M, Agrawala PK, Basu M, Ojha H. Nanotechnology-based drug delivery systems. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Elsevier; 2018. pp. 39-79. [DOI: 10.1016/b978-0-12-813689-8.00002-1] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
30 Shin SW, Song IH, Um SH. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials (Basel) 2015;5:1351-65. [PMID: 28347068 DOI: 10.3390/nano5031351] [Cited by in Crossref: 138] [Cited by in F6Publishing: 103] [Article Influence: 19.7] [Reference Citation Analysis]
31 Lim JP, Baeg GH, Srinivasan DK, Dheen ST, Bay BH. Potential adverse effects of engineered nanomaterials commonly used in food on the miRNome. Food Chem Toxicol 2017;109:771-9. [PMID: 28720288 DOI: 10.1016/j.fct.2017.07.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
32 Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MV, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJ, Rietjens IM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015;89:1469-95. [PMID: 25975987 DOI: 10.1007/s00204-015-1518-5] [Cited by in Crossref: 82] [Cited by in F6Publishing: 65] [Article Influence: 11.7] [Reference Citation Analysis]
33 Mancuso C, Re F, Rivolta I, Elli L, Gnodi E, Beaulieu JF, Barisani D. Dietary Nanoparticles Interact with Gluten Peptides and Alter the Intestinal Homeostasis Increasing the Risk of Celiac Disease. Int J Mol Sci 2021;22:6102. [PMID: 34198897 DOI: 10.3390/ijms22116102] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Mosa IF, Abd HH, Abuzreda A, Assaf N, Yousif AB. Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats' gastric tissue followed hydroxyapatite nanoparticles' oral uptake. Toxicol Res (Camb) 2020;9:493-508. [PMID: 32905138 DOI: 10.1093/toxres/tfaa054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Herrera M, Vazquez D, Sreij R, Drechsler M, Hertle Y, Hellweg T, Dodero V. Insights into gliadin supramolecular organization at digestive pH 3.0. Colloids and Surfaces B: Biointerfaces 2018;165:363-70. [DOI: 10.1016/j.colsurfb.2018.02.053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
36 Mancuso C, Barisani D. Food additives can act as triggering factors in celiac disease: Current knowledge based on a critical review of the literature. World J Clin Cases 2019; 7(8): 917-927 [PMID: 31119137 DOI: 10.12998/wjcc.v7.i8.917] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
37 Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016;240:504-26. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Cited by in Crossref: 184] [Cited by in F6Publishing: 154] [Article Influence: 30.7] [Reference Citation Analysis]
38 Fidaleo M, Tacconi S, Sbarigia C, Passeri D, Rossi M, Tata AM, Dini L. Current Nanocarrier Strategies Improve Vitamin B12 Pharmacokinetics, Ameliorate Patients' Lives, and Reduce Costs. Nanomaterials (Basel) 2021;11:743. [PMID: 33809596 DOI: 10.3390/nano11030743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Herrera MG, Veuthey TV, Dodero VI. Self-organization of gliadin in aqueous media under physiological digestive pHs. Colloids Surf B Biointerfaces 2016;141:565-75. [PMID: 26897550 DOI: 10.1016/j.colsurfb.2016.02.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
40 DeLoid GM, Wang Y, Kapronezai K, Lorente LR, Zhang R, Pyrgiotakis G, Konduru NV, Ericsson M, White JC, De La Torre-Roche R, Xiao H, McClements DJ, Demokritou P. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part Fibre Toxicol 2017;14:40. [PMID: 29029643 DOI: 10.1186/s12989-017-0221-5] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 12.8] [Reference Citation Analysis]
41 Chaves de Souza MP, de Mattos NH, Pedreiro LN, Boni FI, Dos Santos Ramos MA, Bauab TM, Gremião MPD, Chorilli M. Design of Mucoadhesive Nanostructured Polyelectrolyte Complexes Based on Chitosan and Hypromellose Phthalate for Metronidazole Delivery Intended to the Treatment of Helicobacter pylori Infections. Pharmaceutics 2020;12:E1211. [PMID: 33327588 DOI: 10.3390/pharmaceutics12121211] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Fritsch-Decker S, An Z, Yan J, Hansjosten I, Al-Rawi M, Peravali R, Diabaté S, Weiss C. Silica Nanoparticles Provoke Cell Death Independent of p53 and BAX in Human Colon Cancer Cells. Nanomaterials (Basel) 2019;9:E1172. [PMID: 31426331 DOI: 10.3390/nano9081172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
43 Limage R, Tako E, Kolba N, Guo Z, García-Rodríguez A, Marques CNH, Mahler GJ. TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. Small 2020;16:e2000601. [PMID: 32338455 DOI: 10.1002/smll.202000601] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
44 Pietroiusti A, Bergamaschi E, Campagna M, Campagnolo L, De Palma G, Iavicoli S, Leso V, Magrini A, Miragoli M, Pedata P, Palombi L, Iavicoli I. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group. Part Fibre Toxicol 2017;14:47. [PMID: 29178961 DOI: 10.1186/s12989-017-0226-0] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 8.2] [Reference Citation Analysis]
45 Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv Sci (Weinh) 2019;6:1802289. [PMID: 31453052 DOI: 10.1002/advs.201802289] [Cited by in Crossref: 45] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
46 Fine JH, Bondy GS, Coady L, Pearce B, Ross N, Tayabali AF, Halappanavar S, Caldwell D, Curran I, Lefebvre DE. Immunomodulation by gastrointestinal carbon black nanoparticle exposure in ovalbumin T cell receptor transgenic mice. Nanotoxicology 2016;10:1422-30. [PMID: 27534448 DOI: 10.1080/17435390.2016.1225131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
47 Waegeneers N, Brasseur A, Van Doren E, Van der Heyden S, Serreyn PJ, Pussemier L, Mast J, Schneider YJ, Ruttens A, Roels S. Short-term biodistribution and clearance of intravenously administered silica nanoparticles. Toxicol Rep 2018;5:632-8. [PMID: 30622900 DOI: 10.1016/j.toxrep.2018.05.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
48 Deng J, Ding QM, Jia MX, Li W, Zuberi Z, Wang JH, Ren JL, Fu D, Zeng XX, Luo JF. Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environ Pollut 2021;275:116662. [PMID: 33582638 DOI: 10.1016/j.envpol.2021.116662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Fröhlich EE, Fröhlich E. Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota. Int J Mol Sci 2016;17:509. [PMID: 27058534 DOI: 10.3390/ijms17040509] [Cited by in Crossref: 110] [Cited by in F6Publishing: 89] [Article Influence: 18.3] [Reference Citation Analysis]
50 Damato A, Vianello F, Novelli E, Balzan S, Gianesella M, Giaretta E, Gabai G. Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production. Front Vet Sci 2022;9:889612. [DOI: 10.3389/fvets.2022.889612] [Reference Citation Analysis]
51 Islan GA, Martin-saldaña S, Chevalier MT, Alvarez VA, Castro GR. Nanotechnology and Drug Delivery. In: Talevi A, Quiroga PAM, editors. ADME Processes in Pharmaceutical Sciences. Cham: Springer International Publishing; 2018. pp. 135-65. [DOI: 10.1007/978-3-319-99593-9_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Liang M, Li LD, Li L, Li S. Nanotechnology in diagnosis and therapy of gastrointestinal cancer. World J Clin Cases 2022; 10(16): 5146-5155 [DOI: 10.12998/wjcc.v10.i16.5146] [Reference Citation Analysis]
53 Yang P, Hong W, Zhou P, Chen B, Xu H. Nano and bulk ZnO trigger diverse Zn-transport-related gene transcription in distinct regions of the small intestine in mice after oral exposure. Biochemical and Biophysical Research Communications 2017;493:1364-9. [DOI: 10.1016/j.bbrc.2017.09.165] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
54 Lu W, Nishinari K, Phillips GO, Fang Y. Colloidal nutrition science to understand food-body interaction. Trends in Food Science & Technology 2021;109:352-64. [DOI: 10.1016/j.tifs.2021.01.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Shrestha N, Shahbazi M, Araújo F, Mäkilä E, Raula J, Kauppinen EI, Salonen J, Sarmento B, Hirvonen J, Santos HA. Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials 2015;68:9-20. [DOI: 10.1016/j.biomaterials.2015.07.045] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 8.4] [Reference Citation Analysis]
56 Fröhlich E, Roblegg E. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch Toxicol 2016;90:2297-314. [PMID: 27342244 DOI: 10.1007/s00204-016-1765-0] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
57 Ghebretatios M, Schaly S, Prakash S. Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. Int J Mol Sci 2021;22:1942. [PMID: 33669290 DOI: 10.3390/ijms22041942] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 McClements DJ, Xiao H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci Food 2017;1:6. [PMID: 31304248 DOI: 10.1038/s41538-017-0005-1] [Cited by in Crossref: 136] [Cited by in F6Publishing: 102] [Article Influence: 27.2] [Reference Citation Analysis]
59 More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández-Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano Deceased V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R; EFSA Scientific Committee. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021;19:e06768. [PMID: 34377190 DOI: 10.2903/j.efsa.2021.6768] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Chaurasia S, Patel RR, Vure P, Mishra B. Oral naringenin nanocarriers: Fabrication, optimization, pharmacokinetic and chemotherapeutic efficacy assessments. Nanomedicine (Lond) 2017;12:1243-60. [PMID: 28593828 DOI: 10.2217/nnm-2016-0436] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]