BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VLS. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. J Tissue Eng Regen Med 2019;13:1815-29. [PMID: 31310055 DOI: 10.1002/term.2932] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140783] [Reference Citation Analysis]
2 Im G, Lin R. Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1053491] [Reference Citation Analysis]
3 Liu S, Kang Q, Zhang R, Li Y, Bao R. Tendon Adhesion and Novel Solutions. Tendons - Trauma, Inflammation, Degeneration, and Treatment [Working Title] 2022. [DOI: 10.5772/intechopen.108019] [Reference Citation Analysis]
4 Li A, Sasaki J, Inubushi T, Abe G, Nör J, Yamashiro T, Imazato S. Role of Heparan Sulfate in Vasculogenesis of Dental Pulp Stem Cells. J Dent Res 2022. [DOI: 10.1177/00220345221130682] [Reference Citation Analysis]
5 Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing. Front Med (Lausanne) 2022;9:978120. [PMID: 36262272 DOI: 10.3389/fmed.2022.978120] [Reference Citation Analysis]
6 Maharjan S, Bonilla-ruelas DP, Orive G, Zhang YS. Photosymbiotic tissue engineering and regeneration. Prog Biomed Eng 2022;4:043001. [DOI: 10.1088/2516-1091/ac8a2f] [Reference Citation Analysis]
7 Schallmoser A, Einenkel R, Färber C, Sänger N. In vitro growth (IVG) of human ovarian follicles in frozen thawed ovarian cortex tissue culture supplemented with follicular fluid under hypoxic conditions. Arch Gynecol Obstet. [DOI: 10.1007/s00404-022-06672-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Vahav I, Thon M, van den Broek LJ, Spiekstra SW, Atac B, Lindner G, Schimek K, Marx U, Gibbs S. Proof-of-Concept Organ-on-Chip Study: Topical Cinnamaldehyde Exposure of Reconstructed Human Skin with Integrated Neopapillae Cultured under Dynamic Flow. Pharmaceutics 2022;14:1529. [DOI: 10.3390/pharmaceutics14081529] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Weygant J, Koch F, Adam K, Troendle K, Zengerle R, Finkenzeller G, Kartmann S, Koltay P, Zimmermann S. A drop-on-demand bioprinting approach to spatially arrange multiple cell types and monitor their cell-cell interactions towards vascularization based on endothelial cells and mesenchymal stem cells.. [DOI: 10.1101/2022.07.20.500797] [Reference Citation Analysis]
10 Burger MG, Grosso A, Briquez PS, Born GME, Lunger A, Schrenk F, Todorov A, Sacchi V, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater 2022:S1742-7061(22)00408-1. [PMID: 35835287 DOI: 10.1016/j.actbio.2022.07.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Vitale E, Perveen S, Rossin D, Lo Iacono M, Rastaldo R, Giachino C. Role of Chaperone-Mediated Autophagy in Ageing Biology and Rejuvenation of Stem Cells. Front Cell Dev Biol 2022;10:912470. [DOI: 10.3389/fcell.2022.912470] [Reference Citation Analysis]
12 Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. Adv Mater 2022;34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Bosch-Rué È, Díez-Tercero L, Delgado LM, Pérez RA. Biofabrication of Collagen Tissue-Engineered Blood Vessels with Direct Co-Axial Extrusion. Int J Mol Sci 2022;23:5618. [PMID: 35628424 DOI: 10.3390/ijms23105618] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Huang J, Han Q, Cai M, Zhu J, Li L, Yu L, Wang Z, Fan G, Zhu Y, Lu J, Zhou G. Effect of Angiogenesis in Bone Tissue Engineering. Ann Biomed Eng 2022. [PMID: 35525871 DOI: 10.1007/s10439-022-02970-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Salg GA, Poisel E, Neulinger-munoz M, Gerhardus J, Cebulla D, Bludszuweit-philipp C, Vieira V, Nickel F, Herr I, Blaeser A, Giese NA, Hackert T, Kenngott HG. Toward 3D-bioprinting of an endocrine pancreas: A building-block concept for bioartificial insulin-secreting tissue. J Tissue Eng 2022;13:204173142210910. [DOI: 10.1177/20417314221091033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pleeging CC, Wagener FA, de Rooster H, Cremers NA. Revolutionizing non-conventional wound healing using honey by simultaneously targeting multiple molecular mechanisms. Drug Resistance Updates 2022. [DOI: 10.1016/j.drup.2022.100834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022. [PMID: 35349178 DOI: 10.1111/aor.14232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Brebels J, Mignon A. Polymer-Based Constructs for Flexor Tendon Repair: A Review. Polymers (Basel) 2022;14:867. [PMID: 35267690 DOI: 10.3390/polym14050867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Wangpraseurt D, You S, Sun Y, Chen S. Biomimetic 3D living materials powered by microorganisms. Trends in Biotechnology 2022. [DOI: 10.1016/j.tibtech.2022.01.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
20 Mansbridge J. Transplantation of engineered cells and tissues. Tissue Engineering Using Ceramics and Polymers 2022. [DOI: 10.1016/b978-0-12-820508-2.00003-9] [Reference Citation Analysis]
21 Jaradat E, Weaver E, Meziane A, Lamprou DA. Microfluidics Technology for the Design and Formulation of Nanomedicines. Nanomaterials (Basel) 2021;11:3440. [PMID: 34947789 DOI: 10.3390/nano11123440] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
22 Kandel R, Jang SR, Shrestha S, Ghimire U, Shrestha BK, Park CH, Kim CS. A bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. Mater Sci Eng C Mater Biol Appl 2021;131:112501. [PMID: 34857287 DOI: 10.1016/j.msec.2021.112501] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Dalisson B, Charbonnier B, Aoude A, Gilardino M, Harvey E, Makhoul N, Barralet J. Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomater 2021;136:37-55. [PMID: 34626818 DOI: 10.1016/j.actbio.2021.09.053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
24 Zargarzadeh M, Silva AS, Nunes C, Coimbra MA, Custódio CA, Mano JF. Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Mater Horiz 2021. [PMID: 34825909 DOI: 10.1039/d0mh01982h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Goldenberg D, McLaughlin C, Koduru SV, Ravnic DJ. Regenerative Engineering: Current Applications and Future Perspectives. Front Surg 2021;8:731031. [PMID: 34805257 DOI: 10.3389/fsurg.2021.731031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Hughes EAB, Robinson TE, Moakes RJA, Chipara M, Grover LM. Controlled self-assembly of chemical gardens enables fabrication of heterogeneous chemobrionic materials. Commun Chem 2021;4. [DOI: 10.1038/s42004-021-00579-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Zahedi P, Hassani Besheli N, Farokhi M, Mottaghitalab F, Sohrabi A, Ghorbanian SA. Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis. Journal of Natural Fibers 2021. [DOI: 10.1080/15440478.2021.1982814] [Reference Citation Analysis]
28 Kozaniti FK, Metsiou DN, Manara AE, Athanassiou G, Deligianni DD. Recent Advancements in 3D Printing and Bioprinting Methods for Cardiovascular Tissue Engineering. Bioengineering (Basel) 2021;8:133. [PMID: 34677206 DOI: 10.3390/bioengineering8100133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Butelmann T, Priks H, Parent Z, Johnston TG, Tamm T, Nelson A, Lahtvee PJ, Kumar R. Metabolism Control in 3D-Printed Living Materials Improves Fermentation. ACS Appl Bio Mater 2021;4:7195-203. [PMID: 35006951 DOI: 10.1021/acsabm.1c00754] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. Int J Mol Sci 2021;22:10098. [PMID: 34576261 DOI: 10.3390/ijms221810098] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
31 Moeinvaziri F, Zarkesh I, Pooyan P, Nunez DA, Baharvand H. Inner ear organoids: progress and outlook, with a focus on the vascularization. FEBS J 2021. [PMID: 34331740 DOI: 10.1111/febs.16146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Onak Pulat G, Gökmen O, Çevik ZBY, Karaman O. Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis. Soft Matter 2021;17:6616-26. [PMID: 34143171 DOI: 10.1039/d1sm00680k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
33 Baba K, Mikhailov A, Sankai Y. Dynamic flow priming programs allow tuning up the cell layers properties for engineered vascular graft. Sci Rep 2021;11:14666. [PMID: 34282200 DOI: 10.1038/s41598-021-94023-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Wang Y, Fan Y, Liu H. Macrophage Polarization in Response to Biomaterials for Vascularization. Ann Biomed Eng 2021. [PMID: 34282494 DOI: 10.1007/s10439-021-02832-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
35 Lebedenko CG, Banerjee IA. Enhancing Kidney Vasculature in Tissue Engineering-Current Trends and Approaches: A Review. Biomimetics (Basel) 2021;6:40. [PMID: 34208664 DOI: 10.3390/biomimetics6020040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. Biophysics Rev 2021;2:021305. [DOI: 10.1063/5.0048837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021. [PMID: 34058083 DOI: 10.1002/term.3225] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
38 Vajda J, Milojević M, Maver U, Vihar B. Microvascular Tissue Engineering-A Review. Biomedicines 2021;9:589. [PMID: 34064101 DOI: 10.3390/biomedicines9060589] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Shapira A, Dvir T. 3D Tissue and Organ Printing-Hope and Reality. Adv Sci (Weinh) 2021;8:2003751. [PMID: 34026444 DOI: 10.1002/advs.202003751] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
40 Ryu YH, Moon SH, Kim KJ, Jun YJ, Oh DY, Kim SH, Rhie JW. A Novel Hypothesis and Characterization to Isolate Microvascular Endothelial Cells Simultaneously with Adipose-Derived Stem Cells from the Human Adipose-Derived Stromal Vascular Fraction. Tissue Eng Regen Med 2021;18:429-40. [PMID: 33877617 DOI: 10.1007/s13770-021-00332-5] [Reference Citation Analysis]
41 King O, Sunyovszki I, Terracciano CM. Vascularisation of pluripotent stem cell-derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Arch 2021;473:1117-36. [PMID: 33855631 DOI: 10.1007/s00424-021-02557-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Najman S, Najdanović J, Cvetković V. Application of Adipose-Derived Stem Cells in Treatment of Bone Tissue Defects. Clinical Implementation of Bone Regeneration and Maintenance 2021. [DOI: 10.5772/intechopen.92897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Agarwal T, Kazemi S, Costantini M, Perfeito F, Correia CR, Gaspar V, Montazeri L, De Maria C, Mano JF, Vosough M, Makvandi P, Maiti TK. Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. Mater Sci Eng C Mater Biol Appl 2021;122:111896. [PMID: 33641899 DOI: 10.1016/j.msec.2021.111896] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
44 Butelmann T, Priks H, Parent Z, Johnston TG, Tamm T, Nelson A, Lahtvee P, Kumar R. Metabolism Control in 3D Printed Living Materials.. [DOI: 10.1101/2021.01.15.426505] [Reference Citation Analysis]
45 Li Q, Zhang H, Pan J, Teng B, Zeng Z, Chen Y, Hei Y, Zhang S, Wei S, Sun Y. Tripeptide-based macroporous hydrogel improves the osteogenic microenvironment of stem cells. J Mater Chem B 2021;9:6056-67. [PMID: 34278393 DOI: 10.1039/d1tb01175h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
46 Anupama Sekar J, Athira RK, Lakshmi TS, Velayudhan S, Bhatt A, Anil Kumar PR, Kasoju N. 3D Bioprinting in Tissue Engineering and Regenerative Medicine: Current Landscape and Future Prospects. Biomaterials in Tissue Engineering and Regenerative Medicine 2021. [DOI: 10.1007/978-981-16-0002-9_17] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Atlas Y, Gorin C, Novais A, Marchand MF, Chatzopoulou E, Lesieur J, Bascetin R, Binet-Moussy C, Sadoine J, Lesage M, Opsal-Vital S, Péault B, Monnot C, Poliard A, Girard P, Germain S, Chaussain C, Muller L. Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials 2021;268:120594. [PMID: 33387754 DOI: 10.1016/j.biomaterials.2020.120594] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone Defects. Tissue Engineering Part B: Reviews. [DOI: 10.1089/ten.teb.2020.0281] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
49 Nesic D, Durual S, Marger L, Mekki M, Sailer I, Scherrer SS. Could 3D printing be the future for oral soft tissue regeneration? Bioprinting 2020;20:e00100. [DOI: 10.1016/j.bprint.2020.e00100] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
50 Roshanbinfar K, Esser TU, Engel FB. Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine. Antioxid Redox Signal 2021;35:143-62. [PMID: 32993354 DOI: 10.1089/ars.2020.8193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
51 Cristallini C, Vitale E, Giachino C, Rastaldo R. Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. Nanomaterials (Basel) 2020;10:E1587. [PMID: 32806691 DOI: 10.3390/nano10081587] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Mokhtari-Jafari F, Amoabediny G, Dehghan MM. Role of biomechanics in vascularization of tissue-engineered bones. J Biomech 2020;110:109920. [PMID: 32827778 DOI: 10.1016/j.jbiomech.2020.109920] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
53 Geuens T, van Blitterswijk CA, LaPointe VLS. Overcoming kidney organoid challenges for regenerative medicine. NPJ Regen Med. 2020;5:8. [PMID: 32377381 DOI: 10.1038/s41536-020-0093-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
54 Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VLS. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. J Tissue Eng Regen Med 2019;13:1815-29. [PMID: 31310055 DOI: 10.1002/term.2932] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 17.0] [Reference Citation Analysis]