BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic Dye Based Nanoparticles for Cancer Phototheranostics. Small 2018;14:1704247. [DOI: 10.1002/smll.201704247] [Cited by in Crossref: 162] [Cited by in F6Publishing: 170] [Article Influence: 32.4] [Reference Citation Analysis]
Number Citing Articles
1 Yamada S, Takahashi Y, Konno T. Fluorinated Merophosphinine and Phosphinine Dyes: Synthesis and Evaluation of UV-Visible Light Absorption Properties. Compounds 2023;3:153-168. [DOI: 10.3390/compounds3010013] [Reference Citation Analysis]
2 Zhang J, Li Y, Jiang M, Qiu H, Li Y, Gu M, Yin S. Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window. ACS Biomater Sci Eng 2023. [PMID: 36725684 DOI: 10.1021/acsbiomaterials.2c01539] [Reference Citation Analysis]
3 Wang S, Zhou L, Tian H, Li B, Su M, Li Q, Nice EC, Huang C, Shao J, He T. Site-specific nanomodulator capable of modulation apoptosis for enhanced colorectal cancer chemo-photothermal therapy. J Nanobiotechnology 2023;21:24. [PMID: 36670444 DOI: 10.1186/s12951-023-01779-5] [Reference Citation Analysis]
4 Chen Y, Li ZH, Zeng X, Zhang XZ. Bacteria-based bioactive materials for cancer imaging and therapy. Adv Drug Deliv Rev 2023;193:114696. [PMID: 36632868 DOI: 10.1016/j.addr.2023.114696] [Reference Citation Analysis]
5 Cai Y, Pan Y, Liu L, Zhang T, Liang C, Mou X, Ye X, Wang W, Dong X. Succinct croconic acid-based near-infrared functional materials for biomedical applications. Coordination Chemistry Reviews 2023;474:214865. [DOI: 10.1016/j.ccr.2022.214865] [Reference Citation Analysis]
6 Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coordination Chemistry Reviews 2023;475:214913. [DOI: 10.1016/j.ccr.2022.214913] [Reference Citation Analysis]
7 Li C, Jiang G, Yu J, Ji W, Liu L, Zhang P, Du J, Zhan C, Wang J, Tang BZ. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy. Adv Mater 2023;35:e2208229. [PMID: 36300808 DOI: 10.1002/adma.202208229] [Reference Citation Analysis]
8 Bhat V, Sornberger P, Pokuri BSS, Duke R, Ganapathysubramanian B, Risko C. Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches. Chem Sci 2022;14:203-13. [PMID: 36605753 DOI: 10.1039/d2sc04676h] [Reference Citation Analysis]
9 Ni Z, Hu J, Ye Z, Wang X, Shang Y, Liu H. Indocyanine Green Performance Enhanced System for Potent Photothermal Treatment of Bacterial Infection. Mol Pharm 2022;19:4527-37. [PMID: 35143213 DOI: 10.1021/acs.molpharmaceut.1c00985] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sawamura R, Masuya-suzuki A, Iki N. Development of a Diradical-platinum(II) Complex Equipped with a Linker Conjugatable to a Targeting-materials for Cancer-selective Imaging and Therapy. Chem Lett 2022;51:1157-1159. [DOI: 10.1246/cl.220443] [Reference Citation Analysis]
11 Pang E, Zhao S, Wang B, Niu G, Song X, Lan M. Strategies to construct efficient singlet oxygen-generating photosensitizers. Coordination Chemistry Reviews 2022;472:214780. [DOI: 10.1016/j.ccr.2022.214780] [Reference Citation Analysis]
12 Cao W, Zhu Y, Wu F, Tian Y, Chen Z, Xu W, Liu S, Liu T, Xiong H. Three Birds with One Stone: Acceptor Engineering of Hemicyanine Dye with NIR-II Emission for Synergistic Photodynamic and Photothermal Anticancer Therapy. Small 2022;18:e2204851. [PMID: 36300919 DOI: 10.1002/smll.202204851] [Reference Citation Analysis]
13 Liu B, Feng L, Bian Y, Zhu Y, Xing B, Yang P, Lin J. Calcification of Indocyanine Green Laden Dendritic Mesoporous Manganese‐Silicon Nanocomposite for Multiple Oxygen Compensation Enhanced Phototherapy. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202202022] [Reference Citation Analysis]
14 An L, Zheng L, Xu C, Zhao Z, Gao F, Wang W, Ou C, Dong X. Organic Charge‐Transfer Complexes for Near‐Infrared‐Triggered Photothermal Materials. Small Structures 2022. [DOI: 10.1002/sstr.202200220] [Reference Citation Analysis]
15 Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022;190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Yuan X, Tao Y, Xiao W, Du K, Hu H, Xu D, Xu Q. Conjugates of lactobionic acid and IR820: New photosensitizers for efficient photodynamic therapy of hepatoma cells. Drug Development Research 2022. [DOI: 10.1002/ddr.22007] [Reference Citation Analysis]
17 Zeman CJ 4th, Kang G, Kohlstedt KL. Controlling Aggregation-Induced Two-Photon Absorption Enhancement via Intermolecular Interactions. ACS Appl Mater Interfaces 2022. [PMID: 36191092 DOI: 10.1021/acsami.2c12436] [Reference Citation Analysis]
18 Liu N, Mishra K, Stiel AC, Gujrati V, Ntziachristos V. The sound of drug delivery: Optoacoustic imaging in pharmacology. Adv Drug Deliv Rev 2022;189:114506. [PMID: 35998826 DOI: 10.1016/j.addr.2022.114506] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhou W, Yin L, Zhang X, Liang T, Guo Z, Liu Y, Xie C, Fan Q. Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. Front Bioeng Biotechnol 2022;10:1002006. [DOI: 10.3389/fbioe.2022.1002006] [Reference Citation Analysis]
20 Liu N, O’connor P, Gujrati V, Anzenhofer P, Klemm U, Kleigrewe K, Sattler M, Plettenburg O, Ntziachristos V. Multifunctional croconaine nanoparticles for efficient optoacoustic imaging of deep tumors and photothermal therapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0469] [Reference Citation Analysis]
21 Maļeckis A, Avotiņa L, Ķizāne G, Pučkins A, Osipovs S, Kirilova E. New Fluorescent Heterocyclic Compounds Derived From 3-Cyanobenzanthrone. Polycyclic Aromatic Compounds 2022;42:5508-5520. [DOI: 10.1080/10406638.2021.1939068] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Yamada I, Shiba K, Galindo TGP, Tagaya M. Drug Molecular Immobilization and Photofunctionalization of Calcium Phosphates for Exploring Theranostic Functions. Molecules 2022;27:5916. [DOI: 10.3390/molecules27185916] [Reference Citation Analysis]
23 Du B, Liu R, Qu C, Qian K, Suo Y, Wu F, Chen H, Li X, Li Y, Liu H, Cheng Z. J-aggregates albumin-based NIR-II fluorescent dye nanoparticles for cancer phototheranostics. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100366] [Reference Citation Analysis]
24 Zhao T, Hu X, Ma R, Dong F, Liu T, Li L, Yan H, Xu Y, Liu W, Zou B, Tang B. Photovoltaic polymer Photosensitizer-Doped Nano-Therapeutic reagent for in vivo enhanced bioimaging guided photodynamic therapy. Chemical Engineering Journal 2022;441:135983. [DOI: 10.1016/j.cej.2022.135983] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Guo Y, Liu N, Cao Q, Cheng X, Zhang P, Guan Q, Zheng W, He G, Chen J. Photothermal Diol for NIR-Responsive Liquid Crystal Elastomers. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00969] [Reference Citation Analysis]
26 Alvi SB, Rajalakshmi PS, Jogdand AB, Nazia B, Bantal V, Rengan AK. Chitosan IR806 dye-based polyelectrolyte complex nanoparticles with mitoxantrone combination for effective chemo-photothermal therapy of metastatic triple-negative breast cancer. Int J Biol Macromol 2022;216:558-70. [PMID: 35809672 DOI: 10.1016/j.ijbiomac.2022.07.018] [Reference Citation Analysis]
27 Ma L, Ai X, Jiang W, Liu P, Chen Y, Lu K, Song X, Wu X. Zn/Ce metal-organic framework-derived ZnO@CeO2 nano-heterojunction for enhanced photocatalytic activity. Colloid and Interface Science Communications 2022;49:100636. [DOI: 10.1016/j.colcom.2022.100636] [Reference Citation Analysis]
28 Singh A, Qu Z, Sharma A, Singh M, Tse B, Ostrikov K, Popat A, Sonar P, Kumeria T. Ultra-bright green carbon dots with excitation-independent fluorescence for bioimaging. J Nanostruct Chem. [DOI: 10.1007/s40097-022-00501-5] [Reference Citation Analysis]
29 Bonelli J, Ortega-Forte E, Rovira A, Bosch M, Torres O, Cuscó C, Rocas J, Ruiz J, Marchán V. Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane-Polyurea Hybrid Nanocarrier. Biomacromolecules 2022. [PMID: 35695426 DOI: 10.1021/acs.biomac.2c00361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Chen D, Dai H, Wang W, Cai Y, Mou X, Zou J, Shao J, Mao Z, Zhong L, Dong X, Zhao Y. Proton-Driven Transformable 1 O2 -Nanotrap for Dark and Hypoxia Tolerant Photodynamic Therapy. Adv Sci (Weinh) 2022;9:e2200128. [PMID: 35435332 DOI: 10.1002/advs.202200128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
31 Chang W, Wang J, Zhang J, Ling Q, Li Y, Wang J. High Performance Gold Nanorods@DNA Self-Assembled Drug-Loading System for Cancer Thermo-Chemotherapy in the Second Near-Infrared Optical Window. Pharmaceutics 2022;14:1110. [PMID: 35631696 DOI: 10.3390/pharmaceutics14051110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
32 Qiao W, Li Z. Recent Progress of Squaraine-Based Fluorescent Materials and Their Biomedical Applications. Symmetry 2022;14:966. [DOI: 10.3390/sym14050966] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Heshmati Aghda N, Dabbaghianamiri M, Tunnell JW, Betancourt T. Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022;:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ming H, Li B, Tian H, Zhou L, Jiang J, Zhang T, Qiao L, Wu P, Nice EC, Zhang W, He W, Huang C, Zhang H. A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100289] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
35 Tang L, Xiao Q, Yin Y, Mei Y, Li J, Xu L, Gao H, Wang W. An enzyme-responsive and NIR-triggered lipid-polymer hybrid nanoplatform for synergistic photothermal/chemo cancer therapy. Biomater Sci 2022. [PMID: 35383799 DOI: 10.1039/d2bm00216g] [Reference Citation Analysis]
36 Jia R, Wang Y, Ma W, Huang J, Sun H, Chen B, Cheng H, He X, Wang K. Activatable Dual Cancer-Related RNA Imaging and Combined Gene-Chemotherapy through the Target-Induced Intracellular Disassembly of Functionalized DNA Tetrahedron. Anal Chem 2022. [PMID: 35380798 DOI: 10.1021/acs.analchem.2c00364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wang Y, Xia G, Tan M, Wang M, Li Y, Wang H. H‐Dimeric Nanospheres of Amphipathic Squaraine Dye with an 81.2% Photothermal Conversion Efficiency for Photothermal Therapy. Adv Funct Materials 2022;32:2113098. [DOI: 10.1002/adfm.202113098] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
38 Li P, He X, Li Y, Lam JWY, Kwok RTK, Wang CC, Xia LG, Tang BZ. Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. Eur J Nucl Med Mol Imaging. [DOI: 10.1007/s00259-022-05726-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
39 Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 42.0] [Reference Citation Analysis]
40 Mai DK, Kim C, Lee J, Vales TP, Badon IW, De K, Cho S, Yang J, Kim HJ. BODIPY nanoparticles functionalized with lactose for cancer-targeted and fluorescence imaging-guided photodynamic therapy. Sci Rep 2022;12:2541. [PMID: 35169149 DOI: 10.1038/s41598-022-06000-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Zhang L, Jia H, Liu X, Zou Y, Sun J, Liu M, Jia S, Liu N, Li Y, Wang Q. Heptamethine Cyanine–Based Application for Cancer Theranostics. Front Pharmacol 2022;12:764654. [DOI: 10.3389/fphar.2021.764654] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Younis MR, An R, Wang Y, He G, Gurram B, Wang S, Lin J, Ye D, Huang P, Xia XH. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS2 Nanohybrid for Enhanced Photodynamic Killing of Bacterial Pathogens/Cancerous Cells. ACS Appl Bio Mater 2022. [PMID: 35040617 DOI: 10.1021/acsabm.1c01147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. Small 2022;:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
44 Li C, Luo Z, Yang L, Chen J, Cheng K, Xue Y, Liu G, Luo X, Wu F. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Mater Today Bio 2022;13:100198. [PMID: 35024599 DOI: 10.1016/j.mtbio.2021.100198] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
45 Xu W, Xu L, Jia W, Mao X, Liu S, Dong H, Zhang H, Zhang Y. Nanomaterials based on phase change materials for antibacterial application. Biomater Sci 2022. [DOI: 10.1039/d2bm01220k] [Reference Citation Analysis]
46 Li X, Chen L, Luan S, Zhou J, Xiao X, Yang Y, Mao C, Fang P, Chen L, Zeng X, Gao H, Yuan Y. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.01.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
47 Feng T, Lu H, Ye X, Nie C, Zhang J, Yu L, Jin H, Li P, Huang W. Selective inactivation of Gram-positive bacteria in vitro and in vivo through metabolic labelling. Sci China Mater 2022;65:237-45. [DOI: 10.1007/s40843-021-1735-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
48 Fu L, Huang Y, Hou J, Sun M, Wang L, Wang X, Chen L. A Raman/fluorescence dual-modal imaging guided synergistic photothermal and photodynamic therapy nanoplatform for precision cancer theranostics. J Mater Chem B. [DOI: 10.1039/d2tb01696f] [Reference Citation Analysis]
49 Li J, Liu W, Qiu X, Zhao X, Chen Z, Yan M, Fang Z, Li Z, Tu Z, Huang J. Lignin: a sustainable photothermal block for smart elastomers. Green Chem . [DOI: 10.1039/d1gc03571a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
50 Wang X, Wang X, Qu B, Alifu N, Qi J, Liu R, Fu Q, Shen R, Xia Q, Wu L, Sun B, Song J, Lin Y, Huang X, Qin A, Qian J, Tang BZ, Chen G. A Class of Biocompatible Dye-Protein Complex Optical Nanoprobes. ACS Nano 2021. [PMID: 34939417 DOI: 10.1021/acsnano.1c06536] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
51 Wang DH, Chen LJ, Zhao X, Yan XP. A unique self-reporting photosensitizer enabling simultaneous photodynamic therapy and real-time monitoring of phototheranostic process in a dynamic dual-color mode. J Mater Chem B 2021;9:9900-7. [PMID: 34821894 DOI: 10.1039/d1tb02097h] [Reference Citation Analysis]
52 Jia R, Xu H, Wang C, Su L, Jing J, Xu S, Zhou Y, Sun W, Song J, Chen X, Chen H. NIR-II emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors. J Nanobiotechnology 2021;19:419. [PMID: 34903233 DOI: 10.1186/s12951-021-01168-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
53 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
54 Wu Y, Sun J, Huang X, Lai W, Xiong Y. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology 2021;118:658-78. [DOI: 10.1016/j.tifs.2021.10.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
55 Liu J, Xu X, Wang J, Sang R, Zhang Z, Chen J, Lu X, Wang Q, Fan Q. A diketopyrrolopyrrole-based conjugated polymer for efficient photodynamic and photothermal combination therapy under single 808 nm laser irradiation. Dyes and Pigments 2021;196:109762. [DOI: 10.1016/j.dyepig.2021.109762] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
56 Matarranz B, Fernández G. BODIPY dyes: Versatile building blocks to construct multiple types of self-assembled structures. Chem Phys Rev 2021;2:041304. [DOI: 10.1063/5.0065873] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Dai H, Shan H, Sun Z, Dai D, Shang Y, Cao Z, Chen X. Single-cell detection by enhancement of fluorescence in waveguides for cancer diagnosis and therapy. Photon Res 2021;9:2381. [DOI: 10.1364/prj.435686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
58 Zhang M, Li B, Du Y, Zhou G, Tang Y, Shi Y, Zhang B, Xu Z, Huang Q. A novel intelligent PANI/ PPy@Au@MnO2 yolk − shell nanozyme for MRI-guided ‘triple-mode’ synergistic targeted anti-tumor therapy. Chemical Engineering Journal 2021;424:130356. [DOI: 10.1016/j.cej.2021.130356] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
59 Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021;36:102597. [PMID: 34699982 DOI: 10.1016/j.pdpdt.2021.102597] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
60 Li J, Zhang W, Ji W, Wang J, Wang N, Wu W, Wu Q, Hou X, Hu W, Li L. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J Mater Chem B 2021;9:7909-26. [PMID: 34611678 DOI: 10.1039/d1tb01310f] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
61 Gu H, Liu W, Zhen S, Long S, Sun W, Cao J, Zhao X, Du J, Fan J, Peng X. "Internal and External Combined" Nonradiative Decay-Based Nanoagents for Photoacoustic Image-Guided Highly Efficient Photothermal Therapy. ACS Appl Mater Interfaces 2021;13:46353-60. [PMID: 34559529 DOI: 10.1021/acsami.1c14020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
62 Jiang Z, Zhang C, Wang X, Yan M, Ling Z, Chen Y, Liu Z. A Borondifluoride-Complex-Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR-II Window. Angew Chem Int Ed Engl 2021;60:22376-84. [PMID: 34289230 DOI: 10.1002/anie.202107836] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 18.0] [Reference Citation Analysis]
63 Zhao Y, Shi C, Cao J. Biomimetic phototherapy in cancer treatment: from synthesis to application. Drug Deliv 2021;28:2085-99. [PMID: 34596000 DOI: 10.1080/10717544.2021.1983082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Mao L, Huang H, Hu D, Ma H, Tian M, Zhang X, Wei Y. A near-infrared bioprobe with aggregation-induced emission feature for in vitro photodynamic therapy. Dyes and Pigments 2021;194:109521. [DOI: 10.1016/j.dyepig.2021.109521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
65 Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021;9:733792. [PMID: 34557478 DOI: 10.3389/fbioe.2021.733792] [Reference Citation Analysis]
66 Du Q, Qin X, Zhang M, Zhao Z, Li Q, Ren X, Wang N, Luan Y. A mitochondrial-metabolism-regulatable carrier-free nanodrug to amplify the sensitivity of photothermal therapy. Chem Commun (Camb) 2021;57:8993-6. [PMID: 34486606 DOI: 10.1039/d1cc02755g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
67 Qu X, Hong Y, Cai H, Sun X, Shen Q, Yang D, Dong X, Jiao A, Chen P, Shao J. Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Met 2022;41:56-66. [DOI: 10.1007/s12598-021-01795-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
68 Jiang Z, Zhang C, Wang X, Yan M, Ling Z, Chen Y, Liu Z. A Borondifluoride‐Complex‐Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR‐II Window. Angewandte Chemie 2021;133:22550-8. [DOI: 10.1002/ange.202107836] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
69 Dai H, Wang X, Shao J, Wang W, Mou X, Dong X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. Small 2021;:e2102646. [PMID: 34382346 DOI: 10.1002/smll.202102646] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
70 Li L, Han X, Wang M, Li C, Jia T, Zhao X. Recent advances in the development of near-infrared organic photothermal agents. Chemical Engineering Journal 2021;417:128844. [DOI: 10.1016/j.cej.2021.128844] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
71 Yang DC, Wang S, Weng XL, Zhang HX, Liu JY, Lin Z. Singlet Oxygen-Responsive Polymeric Nanomedicine for Light-Controlled Drug Release and Image-Guided Photodynamic-Chemo Combination Therapy. ACS Appl Mater Interfaces 2021;13:33905-14. [PMID: 34278780 DOI: 10.1021/acsami.1c09044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Yu Q, Huang X, Zhang T, Wang W, Yang D, Shao J, Dong X. Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy. Chem Res Chin Univ 2021;37:951-9. [DOI: 10.1007/s40242-021-1190-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
73 Mao L, Jiang Y, Ouyang H, Feng Y, Li R, Zhang X, Nie Z, Wei Y. Revealing the Distribution of Aggregation-Induced Emission Nanoparticles via Dual-Modality Imaging with Fluorescence and Mass Spectrometry. Research (Wash D C) 2021;2021:9784053. [PMID: 34250495 DOI: 10.34133/2021/9784053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
74 Yang G, Liu Y, Zhao CX. Quantitative comparison of different fluorescent dye-loaded nanoparticles. Colloids Surf B Biointerfaces 2021;206:111923. [PMID: 34146992 DOI: 10.1016/j.colsurfb.2021.111923] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
75 Chen S, Zhu L, Du Z, Ma R, Yan T, Alimu G, Zhang X, Alifu N, Ma C. Polymer encapsulated clinical ICG nanoparticles for enhanced photothermal therapy and NIR fluorescence imaging in cervical cancer. RSC Adv 2021;11:20850-8. [PMID: 35479387 DOI: 10.1039/d1ra02875h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
76 Shi M, Fu Z, Pan W, Chen Y, Wang K, Zhou P, Li N, Tang B. A Protein‐Binding Molecular Photothermal Agent for Tumor Ablation. Angew Chem 2021;133:13676-13680. [DOI: 10.1002/ange.202101009] [Reference Citation Analysis]
77 Alkahtani MH, Almuqhim AA, Alshehri AA, Almughem FA, Alhazaa AN, Hemmer P. Fluorescent ruby nanocrystals for biocompatible applications. Appl Phys Lett 2021;118:233701. [DOI: 10.1063/5.0054775] [Reference Citation Analysis]
78 Shi M, Fu Z, Pan W, Chen Y, Wang K, Zhou P, Li N, Tang B. A Protein-Binding Molecular Photothermal Agent for Tumor Ablation. Angew Chem Int Ed Engl 2021;60:13564-8. [PMID: 33783939 DOI: 10.1002/anie.202101009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
79 Liu Q, Tian J, Tian Y, Sun Q, Sun D, Liu D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomater 2021;127:287-97. [PMID: 33831570 DOI: 10.1016/j.actbio.2021.03.064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
80 Zhang M, Wang W, Mohammadniaei M, Zheng T, Zhang Q, Ashley J, Liu S, Sun Y, Tang BZ. Upregulating Aggregation-Induced-Emission Nanoparticles with Blood-Tumor-Barrier Permeability for Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses. Adv Mater 2021;33:e2008802. [PMID: 33893670 DOI: 10.1002/adma.202008802] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
81 Chen D, Xu Q, Wang W, Shao J, Huang W, Dong X. Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small 2021;17:e2006742. [PMID: 34038611 DOI: 10.1002/smll.202006742] [Cited by in Crossref: 54] [Cited by in F6Publishing: 65] [Article Influence: 27.0] [Reference Citation Analysis]
82 Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang JL. Metal Modulation: An Easy-to-Implement Tactic for Tuning Lanthanide Phototheranostics. J Am Chem Soc 2021;143:7541-52. [PMID: 33973784 DOI: 10.1021/jacs.1c03041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
83 Fu L, Yang S, Jiang S, Zhou X, Sha Z, He C. One-step synthesis of multifunctional nanoparticles for CT/PA imaging guided breast cancer photothermal therapy. Colloids and Surfaces B: Biointerfaces 2021;201:111630. [DOI: 10.1016/j.colsurfb.2021.111630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
84 Liu N, O'Connor P, Gujrati V, Gorpas D, Glasl S, Blutke A, Walch A, Kleigrewe K, Sattler M, Plettenburg O, Ntziachristos V. Facile Synthesis of a Croconaine-Based Nanoformulation for Optoacoustic Imaging and Photothermal Therapy. Adv Healthc Mater 2021;10:e2002115. [PMID: 33738974 DOI: 10.1002/adhm.202002115] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
85 Fu L, Zhou X, He C. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy. Macromol Biosci 2021;21:e2100075. [PMID: 33885225 DOI: 10.1002/mabi.202100075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
86 Liang C, Zhang X, Wang Z, Wang W, Yang M, Dong X. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J Mater Chem B 2020;8:4748-63. [PMID: 32129418 DOI: 10.1039/d0tb00098a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
87 Yang X, Liu R, Zhong Z, Huang H, Shao J, Xie X, Zhang Y, Wang W, Dong X. Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chemical Engineering Journal 2021;409:127381. [DOI: 10.1016/j.cej.2020.127381] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 19.5] [Reference Citation Analysis]
88 Yan Z, Wang M, Shi M, He Y, Zhang Y, Qiu S, Yang H, Chen H, He H, Guo Z. Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. J Mater Chem B 2020;8:6886-97. [PMID: 32323684 DOI: 10.1039/d0tb00609b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
89 Liu N, Gujrati V, Malekzadeh-Najafabadi J, Werner JPF, Klemm U, Tang L, Chen Z, Prakash J, Huang Y, Stiel A, Mettenleiter G, Aichler M, Blutke A, Walch A, Kleigrewe K, Razansky D, Sattler M, Ntziachristos V. Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors. Photoacoustics 2021;22:100263. [PMID: 33948433 DOI: 10.1016/j.pacs.2021.100263] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
90 Xiong J, Bian Q, Lei S, Deng Y, Zhao K, Sun S, Fu Q, Xiao Y, Cheng B. Bi19S27I3 nanorods: a new candidate for photothermal therapy in the first and second biological near-infrared windows. Nanoscale 2021;13:5369-82. [PMID: 33660720 DOI: 10.1039/d0nr09137e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
91 Hu X, Chen Z, Jin AJ, Yang Z, Gan D, Wu A, Ao H, Huang W, Fan Q. Rational Design of All-Organic Nanoplatform for Highly Efficient MR/NIR-II Imaging-Guided Cancer Phototheranostics. Small 2021;17:e2007566. [PMID: 33666345 DOI: 10.1002/smll.202007566] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
92 Auwalu MA, Cheng S. Diketopyrrolopyrrole Fluorescent Probes, Photophysical and Biological Applications. Chemosensors 2021;9:44. [DOI: 10.3390/chemosensors9030044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
93 Ji C, Lai L, Li P, Wu Z, Cheng W, Yin M. Organic dye assemblies with aggregation‐induced photophysical changes and their bio‐applications. Aggregate 2021;2. [DOI: 10.1002/agt2.39] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
94 Wang S, Liu Z, Tong Y, Zhai Y, Zhao X, Yue X, Qiao Y, Liu Y, Yin Y, Xi R, Zhao W, Meng M. Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA. Journal of Controlled Release 2021;330:483-92. [DOI: 10.1016/j.jconrel.2020.12.048] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
95 Alkahtani M, Alsofyani N, Alfahd A, Almuqhim AA, Almughem FA, Alshehri AA, Qasem H, Hemmer PR. Engineering Red-Enhanced and Biocompatible Upconversion Nanoparticles. Nanomaterials (Basel) 2021;11:284. [PMID: 33499075 DOI: 10.3390/nano11020284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
96 Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation (N Y) 2021;2:100082. [PMID: 34557737 DOI: 10.1016/j.xinn.2021.100082] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
97 Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation (N Y) 2021;2:100082. [PMID: 34557737 DOI: 10.1016/j.xinn.2021.100082] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
98 Zhang G, Wang W, Zou H, Wei Z, Song C, Ran J, Cao Z, Cai Y, Han W. Novel semiconducting nano-agents incorporating tirapazamine for imaging guided synergistic cancer hypoxia activated photo-chemotherapy. J Mater Chem B 2021;9:5318-28. [PMID: 34231629 DOI: 10.1039/d1tb00659b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
99 Du J, Shi T, Long S, Chen P, Sun W, Fan J, Peng X. Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coordination Chemistry Reviews 2021;427:213604. [DOI: 10.1016/j.ccr.2020.213604] [Cited by in Crossref: 42] [Cited by in F6Publishing: 50] [Article Influence: 21.0] [Reference Citation Analysis]
100 Zheng B, He Q, Li X, Yoon J, Huang J. Phthalocyanines as contrast agents for photothermal therapy. Coordination Chemistry Reviews 2021;426:213548. [DOI: 10.1016/j.ccr.2020.213548] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 30.0] [Reference Citation Analysis]
101 Yang S, Chen C, Qiu Y, Xu C, Yao J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2021;268:120562. [PMID: 33278682 DOI: 10.1016/j.biomaterials.2020.120562] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
102 Zárate IA, Aguilar-Bolados H, Yazdani-Pedram M, Pizarro GDC, Neira-Carrillo A. In Vitro Hyperthermia Evaluation of Electrospun Polymer Composite Fibers Loaded with Reduced Graphene Oxide. Polymers (Basel) 2020;12:E2663. [PMID: 33187366 DOI: 10.3390/polym12112663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
103 Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020;173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
104 Liu B, Wang Z, Li T, Sun Q, Dong S, Zhong C, Yang D, He F, Gai S, Yang P. Rapid Decomposition and Catalytic Cascade Nanoplatforms Based on Enzymes and Mn-Etched Dendritic Mesoporous Silicon for MRI-Guided Synergistic Therapy. ACS Appl Mater Interfaces 2020;12:45772-88. [PMID: 32969221 DOI: 10.1021/acsami.0c12580] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
105 Fathi P, Pan D. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine (Lond) 2020;15:2493-515. [PMID: 32975469 DOI: 10.2217/nnm-2020-0125] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
106 Wang Z, Peng Q, Huang X, Ma Q, Shen Q, Shao J. Linear acenaphthene-imide-fused pyrazinacene-quinone: synthesis and photophysical properties. Materials Technology. [DOI: 10.1080/10667857.2020.1810925] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
107 Gao D, Hu D, Liu X, Zhang X, Yuan Z, Sheng Z, Zheng H. Recent Advances in Conjugated Polymer Nanoparticles for NIR-II Imaging and Therapy. ACS Appl Polym Mater 2020;2:4241-57. [DOI: 10.1021/acsapm.0c00679] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
108 Zhang Y, Fang F, Li L, Zhang J. Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. ACS Biomater Sci Eng 2020;6:4816-33. [PMID: 33455214 DOI: 10.1021/acsbiomaterials.0c00883] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 13.3] [Reference Citation Analysis]
109 Wu F, Chen J, Li H, Li C, Wang H, Liu G, Luo X, Zhu X. Gd (III) DOTA‐Functionalized Phthalocyanine Nanodots for Magnetic Resonance Imaging and Photothermal/Photodynamic Therapy. Adv Mater Interfaces 2020;7:2000713. [DOI: 10.1002/admi.202000713] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
110 Zhang Y, Ren J, Gao H, Liu J, Xia W, Qiao W, Wang Z. Characterizations and Photothermal Properties of Narrow Bandgap Conjugated Polymer Nanoparticles. Chin J Polym Sci 2020;38:814-8. [DOI: 10.1007/s10118-020-2420-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
111 Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health‐related applications. View 2020;1:20200055. [DOI: 10.1002/viw.20200055] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
112 Wang Z, Sun X, Huang T, Song J, Wang Y. A Sandwich Nanostructure of Gold Nanoparticle Coated Reduced Graphene Oxide for Photoacoustic Imaging-Guided Photothermal Therapy in the Second NIR Window. Front Bioeng Biotechnol 2020;8:655. [PMID: 32695755 DOI: 10.3389/fbioe.2020.00655] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
113 Shao W, Yang C, Li F, Wu J, Wang N, Ding Q, Gao J, Ling D. Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/PDT. Nanomicro Lett 2020;12:147. [PMID: 34138129 DOI: 10.1007/s40820-020-00474-6] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
114 Wu F, Lu Y, Mu X, Chen Z, Liu S, Zhou X, Liu S, Li Z. Intriguing H-Aggregates of Heptamethine Cyanine for Imaging-Guided Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2020;12:32388-96. [PMID: 32597630 DOI: 10.1021/acsami.0c07608] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
115 Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano 2020;14:6470-97. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Cited by in Crossref: 92] [Cited by in F6Publishing: 100] [Article Influence: 30.7] [Reference Citation Analysis]
116 Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X. Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. ACS Appl Mater Interfaces 2020;12:26914-25. [PMID: 32463220 DOI: 10.1021/acsami.0c05021] [Cited by in Crossref: 64] [Cited by in F6Publishing: 70] [Article Influence: 21.3] [Reference Citation Analysis]
117 Su Y, Wang N, Liu B, Du Y, Li R, Meng Y, Feng Y, Shan Z, Meng S. A phototheranostic nanoparticle for cancer therapy fabricated by BODIPY and graphene to realize photo-chemo synergistic therapy and fluorescence/photothermal imaging. Dyes and Pigments 2020;177:108262. [DOI: 10.1016/j.dyepig.2020.108262] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
118 Tang C, Song C, Wei Z, Liang C, Ran J, Cai Y, Dong X, Han W. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci China Chem 2020;63:946-56. [DOI: 10.1007/s11426-020-9723-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
119 Fang F, Li M, Zhang J, Lee C. Different Strategies for Organic Nanoparticle Preparation in Biomedicine. ACS Materials Lett 2020;2:531-49. [DOI: 10.1021/acsmaterialslett.0c00078] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
120 Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. Nanoscale 2020;12:8040-64. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
121 Xiao F, Lin L, Chao Z, Shao C, Chen Z, Wei Z, Lu J, Huang Y, Li L, Liu Q, Liang Y, Tian L. Organic Spherical Nucleic Acids for the Transport of a NIR‐II‐Emitting Dye Across the Blood–Brain Barrier. Angew Chem 2020;132:9789-97. [DOI: 10.1002/ange.202002312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
122 Xiao F, Lin L, Chao Z, Shao C, Chen Z, Wei Z, Lu J, Huang Y, Li L, Liu Q, Liang Y, Tian L. Organic Spherical Nucleic Acids for the Transport of a NIR‐II‐Emitting Dye Across the Blood–Brain Barrier. Angew Chem Int Ed 2020;59:9702-10. [DOI: 10.1002/anie.202002312] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
123 He B, Situ B, Zhao Z, Zheng L. Promising Applications of AIEgens in Animal Models. Small Methods 2020;4:1900583. [DOI: 10.1002/smtd.201900583] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
124 Qi S, Kwon N, Yim Y, Nguyen VN, Yoon J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem Sci 2020;11:6479-84. [PMID: 34094113 DOI: 10.1039/d0sc01171a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 19.0] [Reference Citation Analysis]
125 Leitão MM, de Melo-Diogo D, Alves CG, Lima-Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020;9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
126 He Z, Zhao L, Zhang Q, Chang M, Li C, Zhang H, Lu Y, Chen Y. An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer. Adv Funct Mater 2020;30:1910301. [DOI: 10.1002/adfm.201910301] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
127 Deng H, Zhou Z, Yang W, Lin LS, Wang S, Niu G, Song J, Chen X. Endoplasmic Reticulum Targeting to Amplify Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett 2020;20:1928-33. [PMID: 32073871 DOI: 10.1021/acs.nanolett.9b05210] [Cited by in Crossref: 138] [Cited by in F6Publishing: 152] [Article Influence: 46.0] [Reference Citation Analysis]
128 He C, Yu L, Ding L, Chen Y, Hao Y. Self‐Assembled/Drug‐Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades. Adv Funct Mater 2020;30:1908907. [DOI: 10.1002/adfm.201908907] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
129 Song C, Xu W, Wei Z, Ou C, Wu J, Tong J, Cai Y, Dong X, Han W. Anti-LDLR modified TPZ@Ce6-PEG complexes for tumor hypoxia-targeting chemo-/radio-/photodynamic/photothermal therapy. J Mater Chem B 2020;8:648-54. [PMID: 31898718 DOI: 10.1039/c9tb02248a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
130 Kong G, Zhang M, Xiong M, Fu X, Ke G, Zhang X. DNA nanostructure-based fluorescent probes for cellular sensing. Anal Methods 2020;12:1415-29. [DOI: 10.1039/d0ay00105h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
131 Long Y, Wu X, Li Z, Fan J, Hu X, Liu B. PEGylated WS 2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomater Sci 2020;8:5088-105. [DOI: 10.1039/d0bm00972e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
132 Zhang D, Xu H, He T, Younis MR, Zeng L, Liu H, Jiang C, Lin J, Huang P. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. Nanoscale 2020;12:7174-9. [DOI: 10.1039/d0nr00468e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
133 Mu X, Lu Y, Wu F, Wei Y, Ma H, Zhao Y, Sun J, Liu S, Zhou X, Li Z. Supramolecular Nanodiscs Self-Assembled from Non-Ionic Heptamethine Cyanine for Imaging-Guided Cancer Photothermal Therapy. Adv Mater 2020;32:e1906711. [PMID: 31773830 DOI: 10.1002/adma.201906711] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 19.7] [Reference Citation Analysis]
134 Chen C, Ou H, Liu R, Ding D. Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Adv Mater 2020;32:e1806331. [PMID: 30924971 DOI: 10.1002/adma.201806331] [Cited by in Crossref: 185] [Cited by in F6Publishing: 192] [Article Influence: 61.7] [Reference Citation Analysis]
135 Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. J Mater Chem B 2020;8:5305-11. [DOI: 10.1039/d0tb00991a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
136 Xue S, Liu X, Chen SL, Gan W, Yuan Q. Surface curvature-dependent adsorption and aggregation of fluorescein isothiocyanate on gold nanoparticles. Phys Chem Chem Phys 2019;21:26598-605. [PMID: 31793570 DOI: 10.1039/c9cp04939h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
137 Tang L, Zhao X, Feng C, Bai L, Yang J, Bao R, Liu Z, Yang M, Yang W. Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials. Solar Energy Materials and Solar Cells 2019;203:110174. [DOI: 10.1016/j.solmat.2019.110174] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 13.0] [Reference Citation Analysis]
138 Amendoeira A, García LR, Fernandes AR, Baptista PV. Light Irradiation of Gold Nanoparticles Toward Advanced Cancer Therapeutics. Adv Therap 2020;3:1900153. [DOI: 10.1002/adtp.201900153] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
139 Zhang J, Ning L, Huang J, Zhang C, Pu K. Activatable molecular agents for cancer theranostics. Chem Sci 2019;11:618-30. [PMID: 34123034 DOI: 10.1039/c9sc05460j] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 18.5] [Reference Citation Analysis]
140 Shao C, Xiao F, Guo H, Yu J, Jin D, Wu C, Xi L, Tian L. Utilizing Polymer Micelle to Control Dye J-aggregation and Enhance Its Theranostic Capability. iScience 2019;22:229-39. [PMID: 31786519 DOI: 10.1016/j.isci.2019.11.022] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
141 Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2020;35:331-50. [PMID: 31721139 DOI: 10.14670/HH-18-184] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
142 Li Z, Chen Y, Yang Y, Yu Y, Zhang Y, Zhu D, Yu X, Ouyang X, Xie Z, Zhao Y, Li L. Recent Advances in Nanomaterials-Based Chemo-Photothermal Combination Therapy for Improving Cancer Treatment. Front Bioeng Biotechnol 2019;7:293. [PMID: 31696114 DOI: 10.3389/fbioe.2019.00293] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 17.8] [Reference Citation Analysis]
143 Ouyang B, Liu F, Ruan S, Liu Y, Guo H, Cai Z, Yu X, Pang Z, Shen S. Localized Free Radicals Burst Triggered by NIR-II Light for Augmented Low-Temperature Photothermal Therapy. ACS Appl Mater Interfaces 2019;11:38555-67. [DOI: 10.1021/acsami.9b15009] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
144 Zhang S, Li Q, Yang N, Shi Y, Ge W, Wang W, Huang W, Song X, Dong X. Phase‐Change Materials Based Nanoparticles for Controlled Hypoxia Modulation and Enhanced Phototherapy. Adv Funct Mater 2019;29:1906805. [DOI: 10.1002/adfm.201906805] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 18.8] [Reference Citation Analysis]
145 Wintzheimer S, Genin E, Vellutini L, Le Bourdon G, Kessler M, Hackenberg S, Dembski S, Heuzé K. Functionalisation of TiO2 nanoparticles with a fluorescent organosilane: A synergy enabling their visualisation in biological cells and an enhanced photocatalytic activity. Colloids Surf B Biointerfaces 2019;181:1019-25. [PMID: 31382329 DOI: 10.1016/j.colsurfb.2019.05.060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
146 Li S, Deng Q, Li X, Huang Y, Li X, Liu F, Wang H, Qing W, Liu Z, Lee C. Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy. Biomaterials 2019;216:119252. [DOI: 10.1016/j.biomaterials.2019.119252] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
147 Abd Elkodous M, El-sayyad GS, Abdelrahman IY, El-bastawisy HS, Mohamed AE, Mosallam FM, Nasser HA, Gobara M, Baraka A, Elsayed MA, El-batal AI. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces 2019;180:411-28. [DOI: 10.1016/j.colsurfb.2019.05.008] [Cited by in Crossref: 108] [Cited by in F6Publishing: 113] [Article Influence: 27.0] [Reference Citation Analysis]
148 Wu J, Williams GR, Niu S, Gao F, Tang R, Zhu LM. A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Adv Sci (Weinh) 2019;6:1802001. [PMID: 31380200 DOI: 10.1002/advs.201802001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 12.8] [Reference Citation Analysis]
149 Cao J, Chi J, Xia J, Zhang Y, Han S, Sun Y. Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy. ACS Appl Mater Interfaces 2019;11:25720-9. [DOI: 10.1021/acsami.9b07694] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 12.8] [Reference Citation Analysis]
150 Liu M, Zhang P, Deng L, Guo D, Tan M, Huang J, Luo Y, Cao Y, Wang Z. IR780-based light-responsive nanocomplexes combining phase transition for enhancing multimodal imaging-guided photothermal therapy. Biomater Sci 2019;7:1132-46. [PMID: 30648167 DOI: 10.1039/c8bm01524d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
151 Ma X, Bai S, Zhang X, Ma X, Jia D, Shi X, Shao J, Xue P, Kang Y, Xu Z. Enhanced Tumor Penetration and Chemotherapy Efficiency by Covalent Self-Assembled Nanomicelle Responsive to Tumor Microenvironment. Biomacromolecules 2019;20:2637-48. [PMID: 31141665 DOI: 10.1021/acs.biomac.9b00424] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
152 Yang Q, Xiao Y, Yin Y, Li G, Peng J. Erythrocyte Membrane-Camouflaged IR780 and DTX Coloading Polymeric Nanoparticles for Imaging-Guided Cancer Photo-Chemo Combination Therapy. Mol Pharm 2019;16:3208-20. [PMID: 31145853 DOI: 10.1021/acs.molpharmaceut.9b00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
153 Gao S, Wei G, Zhang S, Zheng B, Xu J, Chen G, Li M, Song S, Fu W, Xiao Z, Lu W. Albumin tailoring fluorescence and photothermal conversion effect of near-infrared-II fluorophore with aggregation-induced emission characteristics. Nat Commun 2019;10:2206. [PMID: 31101816 DOI: 10.1038/s41467-019-10056-9] [Cited by in Crossref: 137] [Cited by in F6Publishing: 145] [Article Influence: 34.3] [Reference Citation Analysis]
154 Huang X, Chen C, Zhu X, Zheng X, Li S, Gong X, Xiao Z, Jiang N, Yu C, Yi C. Transdermal BQ-788/EA@ZnO quantum dots as targeting and smart tyrosinase inhibitors in melanocytes. Mater Sci Eng C Mater Biol Appl 2019;102:45-52. [PMID: 31147016 DOI: 10.1016/j.msec.2019.04.042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
155 Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48:2053-108. [PMID: 30259015 DOI: 10.1039/c8cs00618k] [Cited by in Crossref: 1334] [Cited by in F6Publishing: 1406] [Article Influence: 333.5] [Reference Citation Analysis]
156 Zhang Z, Yu HJ, Wu S, Huang H, Si LP, Liu HY, Shi L, Zhang HT. Synthesis, characterization, and photodynamic therapy activity of 5,10,15,20-Tetrakis(carboxyl)porphyrin. Bioorg Med Chem 2019;27:2598-608. [PMID: 30992204 DOI: 10.1016/j.bmc.2019.03.051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
157 Yang X, Yu Q, Yang N, Xue L, Shao J, Li B, Shao J, Dong X. Thieno[3,2-b]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. J Mater Chem B 2019;7:2454-62. [PMID: 32255122 DOI: 10.1039/c8tb03185a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
158 Weng M, Yang X, Ni Y, Xu C, Zhang H, Shao J, Shi N, Zhang C, Wu Q, Li L, Huang W. Deep-red fluorogenic probe for rapid detection of nitric oxide in Parkinson’s disease models. Sensors and Actuators B: Chemical 2019;283:769-75. [DOI: 10.1016/j.snb.2018.12.071] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
159 Pan D, Liang P, Zhong X, Wang D, Cao H, Wang W, He W, Yang Z, Dong X. Self-Assembled Porphyrin-Based Nanoparticles with Enhanced Near-Infrared Absorbance for Fluorescence Imaging and Cancer Photodynamic Therapy. ACS Appl Bio Mater 2019;2:999-1005. [DOI: 10.1021/acsabm.8b00530] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
160 Shi X, Hou M, Ma X, Bai S, Zhang T, Xue P, Zhang X, Liu G, Kang Y, Xu Z. Starburst Diblock Polyprodrugs: Reduction-Responsive Unimolecular Micelles with High Drug Loading and Robust Micellar Stability for Programmed Delivery of Anticancer Drugs. Biomacromolecules 2019;20:1190-202. [PMID: 30658038 DOI: 10.1021/acs.biomac.8b01566] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
161 Wang Q, Xia B, Xu J, Niu X, Cai J, Shen Q, Wang W, Huang W, Fan Q. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Mater Chem Front 2019;3:650-5. [DOI: 10.1039/c9qm00036d] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 21.8] [Reference Citation Analysis]
162 Zhang Y, Song N, Li Y, Yang Z, Chen L, Sun T, Xie Z. Comparative study of two near-infrared coumarin–BODIPY dyes for bioimaging and photothermal therapy of cancer. J Mater Chem B 2019;7:4717-24. [DOI: 10.1039/c9tb01165j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
163 Wu C, Huang X, Tang Y, Xiao W, Sun L, Shao J, Dong X. Pyrrolopyrrole aza-BODIPY near-infrared photosensitizer for dual-mode imaging-guided photothermal cancer therapy. Chem Commun 2019;55:790-3. [DOI: 10.1039/c8cc07768a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
164 Shi N, Shi Y, Shao J, Yang X, Zhang X, Zhang Y, Warsame UF, Shao J, Dong X. Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: Synthesis, characterization and photophysical properties. Dyes and Pigments 2019;160:683-91. [DOI: 10.1016/j.dyepig.2018.08.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
165 Ou C, Zhang Y, Pan D, Ding K, Zhang S, Xu W, Wang W, Si W, Yang Z, Dong X. Zinc porphyrin–polydopamine core–shell nanostructures for enhanced photodynamic/photothermal cancer therapy. Mater Chem Front 2019;3:1786-92. [DOI: 10.1039/c9qm00197b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
166 Cai Y, Wei Z, Song C, Tang C, Huang X, Hu Q, Dong X, Han W. Novel acceptor–donor–acceptor structured small molecule-based nanoparticles for highly efficient photothermal therapy. Chem Commun 2019;55:8967-70. [DOI: 10.1039/c9cc04195h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
167 Pan H, Zhang C, Wang T, Chen J, Sun S. In Situ Fabrication of Intelligent Photothermal Indocyanine Green–Alginate Hydrogel for Localized Tumor Ablation. ACS Appl Mater Interfaces 2019;11:2782-9. [DOI: 10.1021/acsami.8b16517] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 7.4] [Reference Citation Analysis]
168 Zhang W, Lin W, Wang X, Li C, Liu S, Xie Z. Hybrid Nanomaterials of Conjugated Polymers and Albumin for Precise Photothermal Therapy. ACS Appl Mater Interfaces 2019;11:278-87. [PMID: 30520633 DOI: 10.1021/acsami.8b17922] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
169 Liu S, Wang L, Lin M, Liu Y, Zhang L, Zhang H. Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. Chin J Polym Sci 2019;37:115-28. [DOI: 10.1007/s10118-019-2193-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
170 Zhao L, Liu Y, Chang R, Xing R, Yan X. Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy. Adv Funct Mater 2019;29:1806877. [DOI: 10.1002/adfm.201806877] [Cited by in Crossref: 140] [Cited by in F6Publishing: 142] [Article Influence: 28.0] [Reference Citation Analysis]
171 Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Small 2018;14:e1802994. [PMID: 30474224 DOI: 10.1002/smll.201802994] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 12.0] [Reference Citation Analysis]
172 Zhen X, Cheng P, Pu K. Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy. Small 2019;15:e1804105. [PMID: 30457701 DOI: 10.1002/smll.201804105] [Cited by in Crossref: 200] [Cited by in F6Publishing: 212] [Article Influence: 40.0] [Reference Citation Analysis]
173 Wang YY, Wang WL, Shen XC, Zhou B, Chen T, Guo ZX, Wen CC, Jiang BP, Liang H. Combination-Responsive MoO3- x-Hybridized Hyaluronic Acid Hollow Nanospheres for Cancer Phototheranostics. ACS Appl Mater Interfaces 2018;10:42088-101. [PMID: 30408413 DOI: 10.1021/acsami.8b15818] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
174 Chai R, Xing C, Gao D, Yuan H, Zhan Y, Wang S. Remote-Controlling Potassium Channels in Living Cells through Photothermal Inactivation of Calmodulin. Adv Healthc Mater 2018;7:e1800674. [PMID: 30118576 DOI: 10.1002/adhm.201800674] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
175 Yang X, Shi N, Bai L, Ni Y, Li J, Si W, Li L, Shao J, Huang W, Dong X. Synthesis, characterization and fluorescence imaging property of BODIPY-DPP-based dyad/triad. Dyes and Pigments 2018;157:396-404. [DOI: 10.1016/j.dyepig.2018.04.054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
176 Liu G, Zhang S, Shi Y, Huang X, Tang Y, Chen P, Si W, Huang W, Dong X. “Wax-Sealed” Theranostic Nanoplatform for Enhanced Afterglow Imaging-Guided Photothermally Triggered Photodynamic Therapy. Adv Funct Mater 2018;28:1804317. [DOI: 10.1002/adfm.201804317] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 14.2] [Reference Citation Analysis]
177 Xiao W, Wang P, Ou C, Huang X, Tang Y, Wu M, Si W, Shao J, Huang W, Dong X. 2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy. Biomaterials 2018;183:1-9. [PMID: 30142531 DOI: 10.1016/j.biomaterials.2018.08.034] [Cited by in Crossref: 72] [Cited by in F6Publishing: 78] [Article Influence: 14.4] [Reference Citation Analysis]