BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Galano A, Raúl Alvarez‐idaboy J. Computational strategies for predicting free radical scavengers' protection against oxidative stress: Where are we and what might follow? Int J Quantum Chem 2018;119:e25665. [DOI: 10.1002/qua.25665] [Cited by in Crossref: 65] [Cited by in F6Publishing: 29] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Belaya NI, Belyi AV, Shcherbakov IN, Budnikova EA. Two-Variable Predictive Model of the Antiradical Activity of Hydroxybenzoic Acids in Media with Physiological pH. Kinet Catal 2021;62:712-23. [DOI: 10.1134/s002315842106001x] [Reference Citation Analysis]
2 Tam NM, Thong NM, Le Huyen T, Hoang LP, Mechler A, Vo QV. The radical scavenging activity of abietane diterpenoids: Theoretical insights. J Mol Graph Model 2021;105:107892. [PMID: 33743519 DOI: 10.1016/j.jmgm.2021.107892] [Reference Citation Analysis]
3 Vo QV, Bay MV, Nam PC, Quang DT, Flavel M, Hoa NT, Mechler A. Theoretical and Experimental Studies of the Antioxidant and Antinitrosant Activity of Syringic Acid. J Org Chem 2020;85:15514-20. [PMID: 33150788 DOI: 10.1021/acs.joc.0c02258] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
4 Michalík M, Poliak P, Lukeš V, Klein E. From phenols to quinones: Thermodynamics of radical scavenging activity of para-substituted phenols. Phytochemistry 2019;166:112077. [DOI: 10.1016/j.phytochem.2019.112077] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
5 Carreon-Gonzalez M, Vivier-Bunge A, Alvarez-Idaboy JR. Thiophenols, Promising Scavengers of Peroxyl Radicals: Mechanisms and kinetics. J Comput Chem 2019;40:2103-10. [PMID: 31124582 DOI: 10.1002/jcc.25862] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
6 Dao DQ, Phan TTT, Nguyen TLA, Trinh PTH, Tran TTV, Lee JS, Shin HJ, Choi B. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus. J Chem Inf Model 2020;60:1329-51. [DOI: 10.1021/acs.jcim.9b00964] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Vo QV, Tam NM, Bay MV, Mechler A. The radical scavenging activity of natural ramalin: A mechanistic and kinetic study. Chemical Physics Letters 2020;739:137004. [DOI: 10.1016/j.cplett.2019.137004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
8 Vo QV, Van Gon T, Van Bay M, Mechler A. Antioxidant Activities of Monosubstituted Indolinonic Hydroxylamines: A Thermodynamic and Kinetic Study. J Phys Chem B 2019;123:10672-9. [DOI: 10.1021/acs.jpcb.9b08912] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
9 Boulebd H, Pereira DM, Amine Khodja I, Hoa NT, Mechler A, Vo QV. Assessment of the free radical scavenging potential of cannabidiol under physiological conditions: Theoretical and experimental investigations. Journal of Molecular Liquids 2022;346:118277. [DOI: 10.1016/j.molliq.2021.118277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu ZQ. Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently. Eur J Med Chem 2020;189:112020. [PMID: 32006794 DOI: 10.1016/j.ejmech.2019.112020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Dinh Ngoc T, Ha MVT, Nguyen Le T, Nguyen TVA, Mechler A, Hoa NT, Vo QV. Antioxidant Activity of Natural Samwirin A: Theoretical and Experimental Insights. ACS Omega 2021;6:27546-51. [PMID: 34693175 DOI: 10.1021/acsomega.1c04569] [Reference Citation Analysis]
12 Boulebd H, Mechler A, Hoa NT, Vo QV. Thermodynamic and kinetic studies of the antiradical activity of 5-hydroxymethylfurfural: computational insights. New J Chem 2020;44:9863-9. [DOI: 10.1039/d0nj01567a] [Cited by in Crossref: 19] [Article Influence: 9.5] [Reference Citation Analysis]
13 Boulebd H. Radical scavenging behavior of butylated hydroxytoluene against oxygenated free radicals in physiological environments: Insights from DFT calculations. Int J Chem Kinet 2022;54:50-7. [DOI: 10.1002/kin.21540] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Biela M, Kleinová A, Klein E. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Phytochemistry 2022;:113254. [PMID: 35623472 DOI: 10.1016/j.phytochem.2022.113254] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Boulebd H, Tam NM, Mechler A, Vo QV. Substitution effects on the antiradical activity of hydralazine: a DFT analysis. New J Chem 2020;44:16577-83. [DOI: 10.1039/d0nj03753b] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Shakira RM, Abd Wahab MK, Nordin N, Ariffin A. Antioxidant properties of butylated phenol with oxadiazole and hydrazone moiety at ortho position supported by DFT study. RSC Adv 2022;12:17085-95. [PMID: 35755585 DOI: 10.1039/d2ra02140d] [Reference Citation Analysis]
17 Forero-doria O, Guzmán L, Jiménez-aspee F, Echeverría J, Wehinger S, Valenzuela C, Araya-maturana R, Martínez-cifuentes M. An In Vitro and In Silico Study of Antioxidant Properties of Curcuminoid N-alkylpyridinium Salts: Initial Assessment of Their Antitumoral Properties. Antioxidants 2022;11:1104. [DOI: 10.3390/antiox11061104] [Reference Citation Analysis]
18 Boulebd H. The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study. Journal of Biomolecular Structure and Dynamics 2021;39:1955-64. [DOI: 10.1080/07391102.2020.1740791] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
19 Amić A, Marković Z, Dimitrić Marković JM, Milenković D, Stepanić V. Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry 2020;170:112218. [DOI: 10.1016/j.phytochem.2019.112218] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
20 Ribaudo G, Bortoli M, Witt CE, Parke B, Mena S, Oselladore E, Zagotto G, Hashemi P, Orian L. ROS-Scavenging Selenofluoxetine Derivatives Inhibit In Vivo Serotonin Reuptake. ACS Omega 2022;7:8314-22. [PMID: 35309454 DOI: 10.1021/acsomega.1c05567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Duque L, Guerrero G, Colorado JH, Restrepo JA, Vélez E. Theoretical insight into mechanism of antioxidant capacity of atorvastatin and its o-hydroxy and p-hydroxy metabolites, using DFT methods. Computational and Theoretical Chemistry 2022;1214:113758. [DOI: 10.1016/j.comptc.2022.113758] [Reference Citation Analysis]
22 Muraro C, Polato M, Bortoli M, Aiolli F, Orian L. Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol. J Chem Phys 2020;153:114117. [DOI: 10.1063/5.0013278] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Hoa NT, Van Bay M, Mechler A, Vo QV. Is Usnic Acid a Promising Radical Scavenger? ACS Omega 2020;5:17715-20. [PMID: 32715258 DOI: 10.1021/acsomega.0c02306] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Thao THD, Dung VTN, Dao DQ. Antioxidant vs . pro-oxidant activities of quercetin in aqueous phase: A Density Functional Theory study: Antioxidant vs . pro-oxidant activities of quercetin in aqueous phase: A Density Functional Theory study. VJCH 2019;57:696-701. [DOI: 10.1002/vjch.201900085] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-lebeña E. Nitration of Flavonoids and Tocopherols as Potential Modulators of Nitrosative Stress—A Study Based on Their Conformational Structures and Energy Content. Stresses 2022;2:213-30. [DOI: 10.3390/stresses2020015] [Reference Citation Analysis]
26 Merino G, Muñoz‐castro A, Nascimento MAC, Vela A. Theoretical chemistry in Latin America. Int J Quantum Chem 2018;119:e25852. [DOI: 10.1002/qua.25852] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Belaya NI, Belyi AV, Davydova AA. Mechanism of the Antiradical Action of Natural Phenylpropanoids in Nonionizing Polar Media. Kinet Catal 2020;61:839-45. [DOI: 10.1134/s0023158420060026] [Reference Citation Analysis]
28 Xue Y, Liu Y, Luo Q, Wang H, Chen R, Liu Y, Li Y. Antiradical Activity and Mechanism of Coumarin–Chalcone Hybrids: Theoretical Insights. J Phys Chem A 2018;122:8520-9. [DOI: 10.1021/acs.jpca.8b06787] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
29 Michalík M, Rimarčík J, Lukeš V, Klein E. Thermodynamics of primary antioxidant action of flavonols in polar solvents. Acta Chimica Slovaca 2019;12:108-18. [DOI: 10.2478/acs-2019-0016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
30 Reina M, Guzmán-lópez EG, Romeo I, Marino T, Russo N, Galano A. Computationally designed p -coumaric acid analogs: searching for neuroprotective antioxidants. New J Chem 2021;45:14369-80. [DOI: 10.1039/d1nj01235e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
31 Spiegel M, Marino T, Prejanò M, Russo N. Antioxidant and copper-chelating power of new molecules suggested as multiple target agents against Alzheimer's disease. A theoretical comparative study. Phys Chem Chem Phys 2022. [PMID: 35762619 DOI: 10.1039/d2cp01918c] [Reference Citation Analysis]
32 Vo QV, Van LTN, Hoa NT, Mechler A. Modelling the mechanism and kinetics of the radical scavenging activity of iminostilbene. Polymer Degradation and Stability 2021;185:109483. [DOI: 10.1016/j.polymdegradstab.2021.109483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Boulebd H. Is cannabidiolic acid an overlooked natural antioxidant? Insights from quantum chemistry calculations. New J Chem 2021;46:162-8. [DOI: 10.1039/d1nj04771j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
34 Dalla Tiezza M, Hamlin TA, Bickelhaupt FM, Orian L. Radical Scavenging Potential of the Phenothiazine Scaffold: A Computational Analysis. ChemMedChem 2021. [PMID: 34536069 DOI: 10.1002/cmdc.202100546] [Reference Citation Analysis]
35 Bay MV, Nam PC, Quang DT, Mechler A, Hien NK, Hoa NT, Vo QV. Theoretical Study on the Antioxidant Activity of Natural Depsidones. ACS Omega 2020;5:7895-902. [PMID: 32309698 DOI: 10.1021/acsomega.9b04179] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
36 Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS Omega 2020;5:20382-90. [PMID: 32832791 DOI: 10.1021/acsomega.0c02354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Boulebd H. Are thymol, rosefuran, terpinolene and umbelliferone good scavengers of peroxyl radicals? Phytochemistry 2021;184:112670. [PMID: 33524861 DOI: 10.1016/j.phytochem.2021.112670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
38 Francisco-Marquez M, Galano A. Detailed Investigation of the Outstanding Peroxyl Radical Scavenging Activity of Two Novel Amino-Pyridinol-Based Compounds. J Chem Inf Model 2019;59:3494-505. [PMID: 31264854 DOI: 10.1021/acs.jcim.9b00517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
39 Vo QV, Van Bay M, Nam PC, Mechler A. Hydroxyl Radical Scavenging of Indole-3-Carbinol: A Mechanistic and Kinetic Study. ACS Omega 2019;4:19375-81. [PMID: 31763562 DOI: 10.1021/acsomega.9b02782] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
40 Xue Y, Chen M, Li Z, Zhang L, Wang G, Zheng Y, An L. Effects of hydroxyl group, glycosylation and solvents on the antioxidant activity and mechanism of maclurin and its derivatives: Theoretical insights. Journal of Molecular Liquids 2022;351:118609. [DOI: 10.1016/j.molliq.2022.118609] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Abuelizz HA, Taie HAA, Bakheit AH, Mostafa GAE, Marzouk M, Rashid H, Al-Salahi R. Investigation of 4-Hydrazinobenzoic Acid Derivatives for Their Antioxidant Activity: In Vitro Screening and DFT Study. ACS Omega 2021;6:31993-2004. [PMID: 34870022 DOI: 10.1021/acsomega.1c04772] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Vo QV, Tam NM, Hieu LT, Van Bay M, Thong NM, Le Huyen T, Hoa NT, Mechler A. The antioxidant activity of natural diterpenes: theoretical insights. RSC Adv 2020;10:14937-43. [DOI: 10.1039/d0ra02681f] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
43 Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022. [PMID: 35436117 DOI: 10.1021/acs.jcim.2c00104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Vo QV, Thong NM, Le Huyen T, Nam PC, Tam NM, Hoa NT, Mechler A. A thermodynamic and kinetic study of the antioxidant activity of natural hydroanthraquinones. RSC Adv 2020;10:20089-97. [DOI: 10.1039/d0ra04013d] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
45 Cagardová D, Michalík M, Klein E, Lukeš V, Marković Z. DFT and ab initio calculations of ionization potentials, proton affinities and bond dissociation enthalpies of aromatic compounds. Acta Chimica Slovaca 2019;12:225-40. [DOI: 10.2478/acs-2019-0032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Ngoc TD, Le TN, Nguyen TVA, Mechler A, Hoa NT, Nam NL, Vo QV. Mechanistic and Kinetic Studies of the Radical Scavenging Activity of 5-O-Methylnorbergenin: Theoretical and Experimental Insights. J Phys Chem B 2022. [PMID: 35029995 DOI: 10.1021/acs.jpcb.1c09196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Shang Y, Zhou H, Li X, Zhou J, Chen K. Theoretical studies on the antioxidant activity of viniferifuran. New J Chem 2019;43:15736-42. [DOI: 10.1039/c9nj02735a] [Cited by in Crossref: 23] [Article Influence: 7.7] [Reference Citation Analysis]
48 Khargharia S, Rohman R, Kar R. Hybrid Molecules of Hydroxycinnamic and Hydroxybenzoic Acids as Antioxidant and Potential Drug: A DFT Study. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201440] [Reference Citation Analysis]
49 Trung NQ, Thong NM, Cuong DH, Manh TD, Hoang LP, Hien NK, Nam PC, Quang DT, Mechler A, Vo QV. Radical Scavenging Activity of Natural Anthraquinones: a Theoretical Insight. ACS Omega 2021;6:13391-7. [PMID: 34056486 DOI: 10.1021/acsomega.1c01448] [Reference Citation Analysis]
50 Carreon-Gonzalez M, Muñoz-Rugeles L, Vivier-Bunge A, Alvarez-Idaboy JR. Chemical repair of damaged leucine and tryptophane by thiophenols at close to diffusion-controlled rates: Mechanisms and kinetics. J Comput Chem 2022. [PMID: 35106786 DOI: 10.1002/jcc.26813] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Ramis R, Casasnovas R, Mariño L, Frau J, Adrover M, Vilanova B, Mora‐diez N, Ortega‐castro J. A density functional theory study of the free‐radical scavenging activity of aminoguanidine. Comparison with its reactive carbonyl compound and metal scavenging activities. Int J Quantum Chem 2018;119:e25911. [DOI: 10.1002/qua.25911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Boulebd H, Amine Khodja I. A detailed DFT-based study of the free radical scavenging activity and mechanism of daphnetin in physiological environments. Phytochemistry 2021;189:112831. [PMID: 34146991 DOI: 10.1016/j.phytochem.2021.112831] [Reference Citation Analysis]
53 Boulebd H, Mechler A, Thi Hoa N, Vo QV. Insights on the kinetics and mechanisms of the peroxyl radical scavenging capacity of caftaric acid: the important role of the acid–base equilibrium. New J Chem 2022;46:7403-9. [DOI: 10.1039/d2nj00377e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Djafarou S, Boulebd H. The radical scavenger capacity and mechanism of prenylated coumestan-type compounds: a DFT analysis. Free Radic Res 2022;:1-9. [PMID: 35696761 DOI: 10.1080/10715762.2022.2085097] [Reference Citation Analysis]
55 Boulebd H. Modeling the peroxyl radical scavenging behavior of Carnosic acid: Mechanism, kinetics, and effects of physiological environments. Phytochemistry 2021;192:112950. [PMID: 34530282 DOI: 10.1016/j.phytochem.2021.112950] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Trung NQ, Mechler A, Hoa NT, Vo QV. Calculating bond dissociation energies of X−H (X=C, N, O, S) bonds of aromatic systems via density functional theory: a detailed comparison of methods. R Soc open sci 2022;9:220177. [DOI: 10.1098/rsos.220177] [Reference Citation Analysis]
57 Ngoc TD, Thi Ha MV, Le TN, Thi HV, Anh Nguyen TV, Mechler A, Hoa NT, Vo QV. A Potent Antioxidant Sesquiterpene, Abelsaginol, from Abelmoschus sagittifolius : Experimental and Theoretical Insights. ACS Omega. [DOI: 10.1021/acsomega.2c02974] [Reference Citation Analysis]
58 Biela M, Rimarčík J, Senajová E, Kleinová A, Klein E. Antioxidant action of deprotonated flavonoids: Thermodynamics of sequential proton-loss electron-transfer. Phytochemistry 2020;180:112528. [DOI: 10.1016/j.phytochem.2020.112528] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
59 Mittal A, Kakkar R. The antioxidant potential of retrochalcones isolated from liquorice root: A comparative DFT study. Phytochemistry 2021;192:112964. [PMID: 34598043 DOI: 10.1016/j.phytochem.2021.112964] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Vo QV, Hoa NT, Thong NM, Mechler A. The hydroperoxyl and superoxide anion radical scavenging activity of anthocyanidins in physiological environments: Theoretical insights into mechanisms and kinetics. Phytochemistry 2021;192:112968. [PMID: 34598044 DOI: 10.1016/j.phytochem.2021.112968] [Reference Citation Analysis]
61 Shang Y, Li X, Li Z, Zhou J, Qu L, Chen K. Theoretical study on the radical scavenging activity and mechanism of four kinds of Gnetin molecule. Food Chem 2021;378:131975. [PMID: 35033703 DOI: 10.1016/j.foodchem.2021.131975] [Reference Citation Analysis]
62 Boulebd H, Zine Y, Khodja IA, Mermer A, Demir A, Debache A. Synthesis and radical scavenging activity of new phenolic hydrazone/hydrazide derivatives: Experimental and theoretical studies. Journal of Molecular Structure 2022;1249:131546. [DOI: 10.1016/j.molstruc.2021.131546] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Xue Y, Teng Y, Chen M, Li Z, Wang G. Antioxidant Activity and Mechanism of Avenanthramides: Double H+/e- Processes and Role of the Catechol, Guaiacyl, and Carboxyl Groups. J Agric Food Chem 2021;69:7178-89. [PMID: 34156855 DOI: 10.1021/acs.jafc.1c01591] [Reference Citation Analysis]
64 Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018;65:e12514. [DOI: 10.1111/jpi.12514] [Cited by in Crossref: 107] [Cited by in F6Publishing: 104] [Article Influence: 26.8] [Reference Citation Analysis]
65 Hang DTN, Hoa NT, Bich HN, Mechler A, Vo QV. The hydroperoxyl radical scavenging activity of natural hydroxybenzoic acids in oil and aqueous environments: Insights into the mechanism and kinetics. Phytochemistry 2022;201:113281. [PMID: 35738432 DOI: 10.1016/j.phytochem.2022.113281] [Reference Citation Analysis]
66 Hoa NT, Ngoc Van LT, Vo QV. The hydroperoxyl antiradical activity of natural hydroxycinnamic acid derivatives in physiological environments: the effects of pH values on rate constants. RSC Adv 2022;12:15115-22. [DOI: 10.1039/d2ra02311c] [Reference Citation Analysis]
67 Thong NM, Vo QV, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii. ACS Omega 2019;4:14996-5003. [PMID: 31552341 DOI: 10.1021/acsomega.9b01780] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
68 Xue Y, Liu Y, Xie Y, Cong C, Wang G, An L, Teng Y, Chen M, Zhang L. Antioxidant activity and mechanism of dihydrochalcone C-glycosides: Effects of C-glycosylation and hydroxyl groups. Phytochemistry 2020;179:112393. [DOI: 10.1016/j.phytochem.2020.112393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
69 Hoa NT, Van Bay M, Mechler A, Vo QV. Theoretical insights into the antiradical activity and copper-catalysed oxidative damage of mexidol in the physiological environment. R Soc open sci 2022;9:211239. [DOI: 10.1098/rsos.211239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Boulebd H, Khodja IA, Bay MV, Hoa NT, Mechler A, Vo QV. Thermodynamic and Kinetic Studies of the Radical Scavenging Behavior of Hydralazine and Dihydralazine: Theoretical Insights. J Phys Chem B 2020;124:4123-31. [DOI: 10.1021/acs.jpcb.0c02439] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
71 Vo QV, Hoa NT, Nam PC, Quang DT, Mechler A. In Silico Evaluation of the Radical Scavenging Mechanism of Mactanamide. ACS Omega 2020;5:24106-10. [PMID: 32984732 DOI: 10.1021/acsomega.0c03646] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
72 Dudek A, Spiegel M, Strugała-Danak P, Gabrielska J. Analytical and Theoretical Studies of Antioxidant Properties of Chosen Anthocyanins; A Structure-Dependent Relationships. Int J Mol Sci 2022;23:5432. [PMID: 35628243 DOI: 10.3390/ijms23105432] [Reference Citation Analysis]
73 Tabrizi L, Dao DQ, Vu TA. Experimental and theoretical evaluation on the antioxidant activity of a copper( ii ) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Adv 2019;9:3320-35. [DOI: 10.1039/c8ra09763a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
74 Castro-González LM, Alvarez-Idaboy JR, Galano A. Computationally Designed Sesamol Derivatives Proposed as Potent Antioxidants. ACS Omega 2020;5:9566-75. [PMID: 32363309 DOI: 10.1021/acsomega.0c00898] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
75 Hieu LT, Van Thi TT, Hoa NT, Mechler A, Vo QV. 7-O-Galloyltricetifavan: a promising natural radical scavenger. R Soc Open Sci 2022;9:211906. [PMID: 35754988 DOI: 10.1098/rsos.211906] [Reference Citation Analysis]