BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics Clin Appl 2015;9:17-32. [PMID: 25522218 DOI: 10.1002/prca.201400152] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Darebna P, Novak P, Kucera R, Topolcan O, Sanda M, Goldman R, Pompach P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics 2017;153:44-52. [PMID: 27646713 DOI: 10.1016/j.jprot.2016.09.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
2 Harvey DJ. Analysis of Protein Glycosylation by Mass Spectrometry. In: Griffiths JR, Unwin RD, editors. Analysis of Protein Post-Translational Modifications by Mass Spectrometry. Hoboken: John Wiley & Sons, Inc.; 2016. pp. 89-159. [DOI: 10.1002/9781119250906.ch3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Molecular & Cellular Proteomics 2021;20:100054. [DOI: 10.1074/mcp.r120.002095] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 16.0] [Reference Citation Analysis]
4 Thygesen C, Boll I, Finsen B, Modzel M, Larsen MR. Characterizing disease-associated changes in post-translational modifications by mass spectrometry. Expert Review of Proteomics 2018;15:245-58. [DOI: 10.1080/14789450.2018.1433036] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
5 Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N ‐LINKED GLYCANS. Mass Spec Rev 2020;39:586-679. [DOI: 10.1002/mas.21622] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
6 Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018;118:7886-930. [PMID: 29553244 DOI: 10.1021/acs.chemrev.7b00732] [Cited by in Crossref: 148] [Cited by in F6Publishing: 130] [Article Influence: 37.0] [Reference Citation Analysis]
7 Gianazza E, Banfi C. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Review of Proteomics 2018;15:477-502. [DOI: 10.1080/14789450.2018.1484283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
8 Sanda M, Goldman R. Data Independent Analysis of IgG Glycoforms in Samples of Unfractionated Human Plasma. Anal Chem 2016;88:10118-25. [PMID: 27649061 DOI: 10.1021/acs.analchem.6b02554] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
9 Sanda M, Zhang L, Edwards NJ, Goldman R. Site-specific analysis of changes in the glycosylation of proteins in liver cirrhosis using data-independent workflow with soft fragmentation. Anal Bioanal Chem 2017;409:619-27. [PMID: 27822650 DOI: 10.1007/s00216-016-0041-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
10 Sanda M, Benicky J, Goldman R. Low Collision Energy Fragmentation in Structure-Specific Glycoproteomics Analysis. Anal Chem 2020;92:8262-7. [PMID: 32441515 DOI: 10.1021/acs.analchem.0c00519] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
11 Yuan W, Benicky J, Wei R, Goldman R, Sanda M. Quantitative Analysis of Sex-Hormone-Binding Globulin Glycosylation in Liver Diseases by Liquid Chromatography-Mass Spectrometry Parallel Reaction Monitoring. J Proteome Res 2018;17:2755-66. [PMID: 29972295 DOI: 10.1021/acs.jproteome.8b00201] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020;9:E1986. [PMID: 32872358 DOI: 10.3390/cells9091986] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Palaniappan KK, Bertozzi CR. Chemical Glycoproteomics. Chem Rev 2016;116:14277-306. [PMID: 27960262 DOI: 10.1021/acs.chemrev.6b00023] [Cited by in Crossref: 141] [Cited by in F6Publishing: 125] [Article Influence: 23.5] [Reference Citation Analysis]
14 Li S, Thomas SN, Yang S. Glycoprotein Biomarkers. In: Weng N, Jian W, editors. Targeted Biomarker Quantitation by LC-MS. Hoboken: John Wiley & Sons, Inc.; 2017. pp. 245-72. [DOI: 10.1002/9781119413073.ch16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 2015;12:235-53. [PMID: 25955281 DOI: 10.1586/14789450.2015.1042867] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 15.7] [Reference Citation Analysis]
16 Lin CH, Krisp C, Packer NH, Molloy MP. Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge. J Proteomics 2018;172:68-75. [PMID: 29069609 DOI: 10.1016/j.jprot.2017.10.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
17 Sanda M, Ahn J, Kozlik P, Goldman R. Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS. Sci Rep 2021;11:23273. [PMID: 34857845 DOI: 10.1038/s41598-021-02838-3] [Reference Citation Analysis]
18 Yuan W, Wei R, Goldman R, Sanda M. Optimized Fragmentation for Quantitative Analysis of Fucosylated N-Glycoproteins by LC-MS-MRM. Anal Chem 2019;91:9206-12. [PMID: 31268672 DOI: 10.1021/acs.analchem.9b01983] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Bora de Oliveira K, Spencer D, Barton C, Agarwal N. Site-specific monitoring of N-Glycosylation profiles of a CTLA4-Fc-fusion protein from the secretory pathway to the extracellular environment. Biotechnol Bioeng 2017;114:1550-60. [PMID: 28186328 DOI: 10.1002/bit.26266] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
20 Rodríguez-de la Noval C, Rodríguez-Cabrera L, Izquierdo L, Espinosa LA, Hernandez D, Ponce M, Moran-Bertot I, Tellez-Rodríguez P, Borras-Hidalgo O, Huang S, Kan Y, Wright DJ, Ayra-Pardo C. Functional expression of a peritrophin A-like SfPER protein is required for larval development in Spodoptera frugiperda (Lepidoptera: Noctuidae). Sci Rep 2019;9:2630. [PMID: 30796291 DOI: 10.1038/s41598-019-38734-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
21 Dong M, Lih TM, Ao M, Hu Y, Chen SY, Eguez RV, Zhang H. Data-Independent Acquisition-Based Mass Spectrometry (DIA-MS) for Quantitative Analysis of Intact N-Linked Glycopeptides. Anal Chem 2021;93:13774-82. [PMID: 34622651 DOI: 10.1021/acs.analchem.1c01659] [Reference Citation Analysis]
22 Cao C, Yu L, Fu D, Yuan J, Liang X. Absolute quantitation of high abundant Fc-glycopeptides from human serum IgG-1. Analytica Chimica Acta 2020;1102:130-9. [DOI: 10.1016/j.aca.2019.12.035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
23 Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016;15:1773-90. [PMID: 26929216 DOI: 10.1074/mcp.O115.057638] [Cited by in Crossref: 124] [Cited by in F6Publishing: 51] [Article Influence: 20.7] [Reference Citation Analysis]
24 Klein JA, Zaia J. A Perspective on the Confident Comparison of Glycoprotein Site-Specific Glycosylation in Sample Cohorts. Biochemistry 2020;59:3089-97. [PMID: 31833756 DOI: 10.1021/acs.biochem.9b00730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pan KT, Chen CC, Urlaub H, Khoo KH. Adapting Data-Independent Acquisition for Mass Spectrometry-Based Protein Site-Specific N-Glycosylation Analysis. Anal Chem 2017;89:4532-9. [PMID: 28353332 DOI: 10.1021/acs.analchem.6b04996] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
26 Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016;37:1407-19. [PMID: 26872045 DOI: 10.1002/elps.201500552] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
27 Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018;15:203-16. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. Mass Spectrom Rev 2021;40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ma J, Sanda M, Wei R, Zhang L, Goldman R. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J Proteomics 2018;189:67-74. [PMID: 29427759 DOI: 10.1016/j.jprot.2018.02.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]