BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen J, Sun Q, Zhang Z, Cheng C, Lan Y, Zhang H, Xu Z, Zhao Y, Xia , Chu PK. Characteristics of DC Gas-Liquid Phase Atmospheric-Pressure Plasma and Bacteria Inactivation Mechanism: Characteristics of DC Gas-Liquid Phase Atmospheric-Pressure Plasma and Bacteria Inactivation Mechanism. Plasma Process Polym 2015;12:252-9. [DOI: 10.1002/ppap.201400129] [Cited by in Crossref: 49] [Cited by in F6Publishing: 21] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Kurake N, Tanaka H, Ishikawa K, Kondo T, Sekine M, Nakamura K, Kajiyama H, Kikkawa F, Mizuno M, Hori M. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch Biochem Biophys 2016;605:102-8. [PMID: 26820218 DOI: 10.1016/j.abb.2016.01.011] [Cited by in Crossref: 150] [Cited by in F6Publishing: 97] [Article Influence: 25.0] [Reference Citation Analysis]
2 Wang K, Tan H, Lin Y, Diono W, Zhao Y, Goto M. Direct current gas–liquid phase pulsed plasma polymerization of polypyrrole under atmospheric pressure. Plasma Process Polym 2021;18:2000186. [DOI: 10.1002/ppap.202000186] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Xu Z, Xue X, Hu S, Li Y, Shen J, Lan Y, Zhou R, Yang F, Cheng C. Degradation effect and mechanism of gas-liquid phase dielectric barrier discharge on norfloxacin combined with H2O2 or Fe2+. Separation and Purification Technology 2020;230:115862. [DOI: 10.1016/j.seppur.2019.115862] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
4 Xu D, Cui Q, Xu Y, Wang B, Tian M, Li Q, Liu Z, Liu D, Chen H, Kong MG. Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water. Plasma Sci Technol 2018;20:044003. [DOI: 10.1088/2058-6272/aa9842] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Zhang H, Zhang J, Liu Z, Xu D, Guo L, Liu D, Kong MG. Evaluation of the anticancer effects induced by cold atmospheric plasma in 2D and 3D cell‐culture models. Plasma Process Polym 2019;16:1900072. [DOI: 10.1002/ppap.201900072] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
6 Diógenes FEP, Nascimento SRC, Alves Junior C, Paiva EP, Torres SB, Oliveira AK, Ambrósio MMQ. Inactivation of isolated fungi on Erythrina velutina Willd. seeds through atmospheric plasma. Braz J Biol 2021;84:e251367. [PMID: 34932630 DOI: 10.1590/1519-6984.251367] [Reference Citation Analysis]
7 Xu Z, Cheng C, Shen J, Lan Y, Hu S, Han W, Chu PK. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018;121:125-34. [DOI: 10.1016/j.bioelechem.2018.01.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
8 Murugesan P, Moses J, Anandharamakrishnan C. Performance of an atmospheric plasma discharge reactor for inactivation of Enterocococcus faecalis and Escherichia coli in aqueous media. Journal of Environmental Chemical Engineering 2020;8:103891. [DOI: 10.1016/j.jece.2020.103891] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang S, Liu F, Yang D, Wang W, Fang Z. Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode. Journal of Applied Physics 2019;125:043304. [DOI: 10.1063/1.5050259] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
10 Puliyalil H, Filipič G, Cvelbar U. Selective Plasma Etching of Polyphenolic Composite in O 2 /Ar Plasma for Improvement of Material Tracking Properties: Selective Plasma Etching of Polyphenolic Composite…. Plasma Process Polym 2016;13:737-43. [DOI: 10.1002/ppap.201600005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
11 Zhang H, Ma J, Shen J, Lan Y, Ding L, Qian S, Xia W, Cheng C, Chu PK. Roles of membrane protein damage and intracellular protein damage in death of bacteria induced by atmospheric-pressure air discharge plasmas. RSC Adv 2018;8:21139-49. [DOI: 10.1039/c8ra01882k] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
12 Chen Z, Liu D, Chen C, Xu D, Liu Z, Xia W, Rong M, Kong MG. Analysis of the production mechanism of H 2 O 2 in water treated by helium DC plasma jets. J Phys D: Appl Phys 2018;51:325201. [DOI: 10.1088/1361-6463/aad0eb] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
13 Stepczyńska M. Surface Modification by Low Temperature Plasma: Sterilization of Biodegradable Materials: Surface Modification by Low Temperature Plasma…. Plasma Process Polym 2016;13:1080-8. [DOI: 10.1002/ppap.201600051] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 3.2] [Reference Citation Analysis]
14 Hu S, Liu X, Xu Z, Wang J, Li Y, Shen J, Lan Y, Cheng C. Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma. Plasma Sci Technol 2019;21:015501. [DOI: 10.1088/2058-6272/aade82] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
15 Xu Z, Shen J, Cheng C, Hu S, Lan Y, Chu PK. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O 2 plasma jet on Staphylococcus aureus biofilm. J Phys D: Appl Phys 2017;50:105201. [DOI: 10.1088/1361-6463/aa593f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 5.2] [Reference Citation Analysis]
16 Zhang Z, Xu Z, Cheng C, Wei J, Lan Y, Ni G, Sun Q, Qian S, Zhang H, Xia W, Shen J, Meng Y, Chu PK. Bactericidal Effects of Plasma Induced Reactive Species in Dielectric Barrier Gas–Liquid Discharge. Plasma Chem Plasma Process 2017;37:415-31. [DOI: 10.1007/s11090-017-9784-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 22] [Article Influence: 7.8] [Reference Citation Analysis]
17 Misra N. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science & Technology 2015;45:229-44. [DOI: 10.1016/j.tifs.2015.06.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
18 Murugesan P, V. EM, Moses J, Anandharamakrishnan C. Water decontamination using non-thermal plasma: Concepts, applications, and prospects. Journal of Environmental Chemical Engineering 2020;8:104377. [DOI: 10.1016/j.jece.2020.104377] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Shi X, Cai J, Xu G, Ren H, Chen S, Chang Z, Liu J, Huang C, Zhang G, Wu X. Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts. Plasma Sci Technol 2016;18:353-9. [DOI: 10.1088/1009-0630/18/4/04] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
20 Vasikaran EM, Murugesan P, Moses J, Anandharamakrishnan C. Performance of non-thermal plasma reactor for removal of organic and inorganic chemical residues in aqueous media. Journal of Electrostatics 2022;115:103671. [DOI: 10.1016/j.elstat.2022.103671] [Reference Citation Analysis]
21 Motyka A, Dzimitrowicz A, Jamroz P, Lojkowska E, Sledz W, Pohl P. Rapid eradication of bacterial phytopathogens by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode. Biotechnol Bioeng 2018;115:1581-93. [PMID: 29457632 DOI: 10.1002/bit.26565] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
22 Xu Z, Zhou X, Yang W, Zhang Y, Ye Z, Hu S, Ye C, Li Y, Lan Y, Shen J, Ye X, Yang F, Cheng C. In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. Plasma Process Polym 2020;17:1900270. [DOI: 10.1002/ppap.201900270] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
23 Liu J, Yang C, Cheng C, Zhang C, Zhao J, Fu C. In vitro antimicrobial effect and mechanism of action of plasma-activated liquid on planktonic Neisseria gonorrhoeae. Bioengineered 2021;12:4605-19. [PMID: 34320914 DOI: 10.1080/21655979.2021.1955548] [Reference Citation Analysis]
24 Ke Z, Thopan P, Fridman G, Miller V, Yu L, Fridman A, Huang Q. Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clinical Plasma Medicine 2017;7-8:1-8. [DOI: 10.1016/j.cpme.2017.05.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
25 Ruan Z, Guo Y, Gao J, Yang C, Lan Y, Shen J, Xu Z, Cheng C, Liu X, Zhang S, Du W, Chu PK. Control of multidrug-resistant planktonic Acinetobacter baumannii : biocidal efficacy study by atmospheric-pressure air plasma. Plasma Sci Technol 2018;20:065513. [DOI: 10.1088/2058-6272/aab302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Liu F, Zhang B, Fang Z, Wan M, Wan H, Ostrikov KK. Jet-to-jet interactions in atmospheric-pressure plasma jet arrays for surface processing. Plasma Process Polym 2018;15:1700114. [DOI: 10.1002/ppap.201700114] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 3.8] [Reference Citation Analysis]
27 Mance D, Geilmann H, Brand WA, Kewitz T, Kersten H. Changes of 2 H and 18 O abundances in water treated with non-thermal atmospheric pressure plasma jet. Plasma Process Polym 2017;14:1600239. [DOI: 10.1002/ppap.201600239] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
28 Zhang Z, Shen J, Cheng C, Xu Z, Xia W. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water. Plasma Sci Technol 2018;20:044009. [DOI: 10.1088/2058-6272/aaa437] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
29 Kinandana AW, Sumariyah S, Nur M, Abdullah AG, Nandiyanto ABD. Analysis of Plasma-activated Medium (PAM) in aqueous solution by an Atmospheric Pressure Plasma Jet (APPJ). MATEC Web Conf 2018;197:02013. [DOI: 10.1051/matecconf/201819702013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]