BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oliviero T, Verkerk R, Dekker M. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion. Mol Nutr Food Res 2018;62:e1701069. [PMID: 29898282 DOI: 10.1002/mnfr.201701069] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Putriani N, Perdana J, Meiliana, Nugrahedi PY. Effect of Thermal Processing on Key Phytochemical Compounds in Green Leafy Vegetables: A Review. Food Reviews International. [DOI: 10.1080/87559129.2020.1745826] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
2 Baenas N, Marhuenda J, García-Viguera C, Zafrilla P, Moreno DA. Influence of Cooking Methods on Glucosinolates and Isothiocyanates Content in Novel Cruciferous Foods. Foods 2019;8:E257. [PMID: 31336993 DOI: 10.3390/foods8070257] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 8.3] [Reference Citation Analysis]
3 Castro-torres IG, Castro-torres VA, Hernández-lozano M, Naranjo-rodríguez EB, Domínguez-ortiz MÁ. Glucosinolates and metabolism. Glucosinolates: Properties, Recovery, and Applications. Elsevier; 2020. pp. 107-41. [DOI: 10.1016/b978-0-12-816493-8.00004-4] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Zayed A, Sheashea M, Kassem IAA, Farag MA. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit Rev Food Sci Nutr 2022;:1-18. [PMID: 35174750 DOI: 10.1080/10408398.2022.2040416] [Reference Citation Analysis]
5 Eib S, Schneider DJ, Hensel O, Seuß-baum I. Evaluation of trigeminal pungency perception of allyl isothiocyanate – A time intensity (TI) study. Food Quality and Preference 2021;87:104039. [DOI: 10.1016/j.foodqual.2020.104039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Prieto M, López CJ, Simal-gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Functional Food Ingredients from Plants. Elsevier; 2019. pp. 305-50. [DOI: 10.1016/bs.afnr.2019.02.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
7 Klopsch R, Baldermann S, Hanschen FS, Voss A, Rohn S, Schreiner M, Neugart S. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chem 2019;295:412-22. [PMID: 31174776 DOI: 10.1016/j.foodchem.2019.05.113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
8 Eib S, Ramos Gajek S, Schneider DJ, Hensel O, Seuss‐baum I. Determination of detection thresholds of sinigrin in water‐based matrix and allyl isothiocyanate in water‐ and oil‐based matrices. J Sens Stud 2020;35. [DOI: 10.1111/joss.12571] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Gao J, Sun Y, Bao Y, Zhou K, Kong D, Zhao G. Effects of different levels of rapeseed cake containing high glucosinolates in steer ration on rumen fermentation, nutrient digestibility and the rumen microbial community. Br J Nutr 2021;125:266-74. [PMID: 32693843 DOI: 10.1017/S0007114520002767] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Gao J, Cheng B, Sun Y, Zhao Y, Zhao G. Effects of dietary inclusion with rapeseed cake containing high glucosinolates on nitrogen metabolism and urine nitrous oxide emissions in steers. Anim Nutr 2022;8:204-15. [PMID: 34977389 DOI: 10.1016/j.aninu.2021.05.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Bouranis JA, Beaver LM, Ho E. Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front Nutr 2021;8:748433. [PMID: 34631775 DOI: 10.3389/fnut.2021.748433] [Reference Citation Analysis]
12 Orlando P, Nartea A, Silvestri S, Marcheggiani F, Cirilli I, Dludla PV, Fiorini R, Pacetti D, Loizzo MR, Lucci P, Tiano L. Bioavailability Study of Isothiocyanates and Other Bioactive Compounds of Brassica oleracea L. var. Italica Boiled or Steamed: Functional Food or Dietary Supplement? Antioxidants 2022;11:209. [DOI: 10.3390/antiox11020209] [Reference Citation Analysis]
13 Vrca I, Šćurla J, Kević N, Burčul F, Čulić VČ, Bočina I, Blažević I, Bratanić A, Bilušić T. Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate. Eur Food Res Technol. [DOI: 10.1007/s00217-021-03903-x] [Reference Citation Analysis]
14 Shekarri Q, Dekker M. A Physiological-Based Model for Simulating the Bioavailability and Kinetics of Sulforaphane from Broccoli Products. Foods 2021;10:2761. [PMID: 34829040 DOI: 10.3390/foods10112761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants 2022;11:642. [DOI: 10.3390/antiox11040642] [Reference Citation Analysis]
16 Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2021;61:2544-71. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wieczorek MN, Jeleń HH. Volatile Compounds of Selected Raw and Cooked Brassica Vegetables. Molecules 2019;24:E391. [PMID: 30678255 DOI: 10.3390/molecules24030391] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
18 Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020;7:111. [PMID: 32984393 DOI: 10.3389/fnut.2020.00111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
19 Sundaram MK, R P, Haque S, Akhter N, Khan S, Ahmed S, Hussain A. Dietary isothiocyanates inhibit cancer progression by modulation of epigenome. Semin Cancer Biol 2021:S1044-579X(20)30281-9. [PMID: 33434642 DOI: 10.1016/j.semcancer.2020.12.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Hwang ES. Effect of Cooking Method on Antioxidant Compound Contents in Cauliflower. Prev Nutr Food Sci 2019;24:210-6. [PMID: 31328127 DOI: 10.3746/pnf.2019.24.2.210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Baenas N, Cartea ME, Moreno DA, Tortosa M, Francisco M. Processing and cooking effects on glucosinolates and their derivatives. Glucosinolates: Properties, Recovery, and Applications. Elsevier; 2020. pp. 181-212. [DOI: 10.1016/b978-0-12-816493-8.00006-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhang S, Ying D, Cheng L, Bayrak M, Jegasothy H, Sanguansri L, Augustin M. Sulforaphane in broccoli-based matrices: Effects of heat treatment and addition of oil. LWT 2020;128:109443. [DOI: 10.1016/j.lwt.2020.109443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Wang Z, Kwan ML, Pratt R, Roh JM, Kushi LH, Danforth KN, Zhang Y, Ambrosone CB, Tang L. Effects of cooking methods on total isothiocyanate yield from cruciferous vegetables. Food Sci Nutr 2020;8:5673-82. [PMID: 33133569 DOI: 10.1002/fsn3.1836] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutrition Reviews 2021;79:1204-24. [DOI: 10.1093/nutrit/nuaa129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
25 Karanikolopoulou S, Revelou P, Xagoraris M, Kokotou MG, Constantinou-kokotou V. Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. Analytica 2021;2:93-120. [DOI: 10.3390/analytica2040011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Marcinkowska M, Jeleń HH. Determination of the odor threshold concentrations and partition coefficients of isothiocyanates from Brassica vegetables in aqueous solution. LWT 2020;131:109793. [DOI: 10.1016/j.lwt.2020.109793] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
27 Piragine E, Citi V, Lawson K, Calderone V, Martelli A. Potential Effects of Natural H2S-Donors in Hypertension Management. Biomolecules 2022;12:581. [DOI: 10.3390/biom12040581] [Reference Citation Analysis]
28 Oliviero T, Verkerk R, Dekker M. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion. Mol Nutr Food Res 2018;62:e1701069. [PMID: 29898282 DOI: 10.1002/mnfr.201701069] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
29 Lucarini E, Pagnotta E, Micheli L, Parisio C, Testai L, Martelli A, Calderone V, Matteo R, Lazzeri L, Di Cesare Mannelli L, Ghelardini C. Eruca sativa Meal against Diabetic Neuropathic Pain: An H2S-Mediated Effect of Glucoerucin. Molecules 2019;24:E3006. [PMID: 31430978 DOI: 10.3390/molecules24163006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
30 Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T; ARIA group. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021;76:735-50. [PMID: 32762135 DOI: 10.1111/all.14549] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
31 Eib S, Schneider DJ, Hensel O, Seuß-Baum I. Relationship between mustard pungency and allyl-isothiocyanate content: A comparison of sensory and chemical evaluations. J Food Sci 2020;85:2728-36. [PMID: 32844444 DOI: 10.1111/1750-3841.15383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Koper JEB, Kortekaas M, Loonen LMP, Huang Z, Wells JM, Gill CIR, Pourshahidi LK, McDougall G, Rowland I, Pereira-Caro G, Fogliano V, Capuano E. Aryl hydrocarbon Receptor activation during in vitro and in vivo digestion of raw and cooked broccoli (brassica oleracea var. Italica). Food Funct 2020;11:4026-37. [PMID: 32323699 DOI: 10.1039/d0fo00472c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zuniga KB, Graff RE, Feiger DB, Meng MV, Porten SP, Kenfield SA. Lifestyle and Non-muscle Invasive Bladder Cancer Recurrence, Progression, and Mortality: Available Research and Future Directions. Bladder Cancer 2020;6:9-23. [PMID: 34095407 DOI: 10.3233/blc-190249] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021;:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Sun J, Wang Y, Pang X, Tian S, Hu Q, Li X, Liu J, Wang J, Lu Y. The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables. Food Chem 2021;360:130007. [PMID: 33993075 DOI: 10.1016/j.foodchem.2021.130007] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
36 Sita G, Hrelia P, Graziosi A, Morroni F. Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018;10:E1755. [PMID: 30441761 DOI: 10.3390/nu10111755] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]