BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 2014;58:1561-73. [PMID: 24842810 DOI: 10.1002/mnfr.201300729] [Cited by in Crossref: 177] [Cited by in F6Publishing: 170] [Article Influence: 22.1] [Reference Citation Analysis]
Number Citing Articles
1 Akuma P, Okagu OD, Udenigwe CC. Naturally Occurring Exosome Vesicles as Potential Delivery Vehicle for Bioactive Compounds. Front Sustain Food Syst 2019;3:23. [DOI: 10.3389/fsufs.2019.00023] [Cited by in Crossref: 66] [Cited by in F6Publishing: 21] [Article Influence: 22.0] [Reference Citation Analysis]
2 Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. J Crohns Colitis 2018;12:217-29. [PMID: 28961808 DOI: 10.1093/ecco-jcc/jjx115] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 15.3] [Reference Citation Analysis]
3 Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, Zempleni J, Kachman SD, Natarajan SK, Yu J. Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice. Nutrients 2020;12:E477. [PMID: 32069862 DOI: 10.3390/nu12020477] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
4 Yang J, Primo C, Elbaz-Younes I, Hirschi KD. Bioavailability of transgenic microRNAs in genetically modified plants. Genes Nutr 2017;12:17. [PMID: 29507644 DOI: 10.1186/s12263-017-0563-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
5 Lukasik A, Zielenkiewicz P. Plant MicroRNAs-Novel Players in Natural Medicine? Int J Mol Sci 2016;18:E9. [PMID: 28025496 DOI: 10.3390/ijms18010009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
6 Samad AFA, Kamaroddin MF, Sajad M. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Adv Nutr 2021;12:197-211. [PMID: 32862223 DOI: 10.1093/advances/nmaa095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yang C, Merlin D. Lipid-Based Drug Delivery Nanoplatforms for Colorectal Cancer Therapy. Nanomaterials (Basel) 2020;10:E1424. [PMID: 32708193 DOI: 10.3390/nano10071424] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Wang X, Zhang M, Flores SRL, Woloshun RR, Yang C, Yin L, Xiang P, Xu X, Garrick MD, Vidyasagar S, Merlin D, Collins JF. Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol Ther 2019;27:493-506. [PMID: 30713087 DOI: 10.1016/j.ymthe.2019.01.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
9 Quesenberry PJ, Aliotta J, Camussi G, Abdel-Mageed AB, Wen S, Goldberg L, Zhang HG, Tetta C, Franklin J, Coffey RJ, Danielson K, Subramanya V, Ghiran I, Das S, Chen CC, Pusic KM, Pusic AD, Chatterjee D, Kraig RP, Balaj L, Dooner M. Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. J Extracell Vesicles 2015;4:27575. [PMID: 26320942 DOI: 10.3402/jev.v4.27575] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
10 Del Pozo-Acebo L, López de Las Hazas MC, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. Br J Pharmacol 2021;178:2218-45. [PMID: 33644849 DOI: 10.1111/bph.15421] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci Rep 2020;10:4456. [PMID: 32157137 DOI: 10.1038/s41598-020-61358-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
12 Ceccarelli L, Marchetti L, Giacomelli C, Martini C. Advances in microglia cellular models: focus on extracellular vesicle production. Biochem Soc Trans 2021;49:1791-802. [PMID: 34415299 DOI: 10.1042/BST20210203] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct 2019;10:529-38. [PMID: 30724295 DOI: 10.1039/c8fo02295j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
14 Logozzi M, Di Raimo R, Mizzoni D, Fais S. Nanovesicles from Organic Agriculture-Derived Fruits and Vegetables: Characterization and Functional Antioxidant Content. Int J Mol Sci 2021;22:8170. [PMID: 34360936 DOI: 10.3390/ijms22158170] [Reference Citation Analysis]
15 Chaloner T, van Kan JA, Grant-downton RT. RNA ‘Information Warfare’ in Pathogenic and Mutualistic Interactions. Trends in Plant Science 2016;21:738-48. [DOI: 10.1016/j.tplants.2016.05.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
16 Jackson KK, Powell RR, Bruce TF, Marcus RK. Solid-phase extraction of exosomes from diverse matrices via a polyester capillary-channeled polymer (C-CP) fiber stationary phase in a spin-down tip format. Anal Bioanal Chem 2020;412:4713-24. [PMID: 32468278 DOI: 10.1007/s00216-020-02728-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Li M, Chen T, He JJ, Wu JH, Luo JY, Ye RS, Xie MY, Zhang HJ, Zeng B, Liu J, Xi QY, Jiang QY, Sun JJ, Zhang YL. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells 2019;8:E1385. [PMID: 31689969 DOI: 10.3390/cells8111385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zhang L, Chen T, Yin Y, Zhang CY, Zhang YL. Dietary microRNA-A Novel Functional Component of Food. Adv Nutr 2019;10:711-21. [PMID: 31120095 DOI: 10.1093/advances/nmy127] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
19 Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Merchant ML, Zhang X, McClain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021;29:2424-40. [PMID: 33984520 DOI: 10.1016/j.ymthe.2021.05.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021;12:9549-62. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine 2020;15:6917-34. [PMID: 33061359 DOI: 10.2147/IJN.S264498] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 20.0] [Reference Citation Analysis]
22 Yamasaki M, Yamasaki Y, Furusho R, Kimura H, Kamei I, Sonoda H, Ikeda M, Oshima T, Ogawa K, Nishiyama K. Onion (Allium cepa L.)-Derived Nanoparticles Inhibited LPS-Induced Nitrate Production, However, Their Intracellular Incorporation by Endocytosis Was Not Involved in This Effect on RAW264 Cells. Molecules 2021;26:2763. [PMID: 34067155 DOI: 10.3390/molecules26092763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ibrahim A, Marbán E. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology. Annu Rev Physiol 2016;78:67-83. [PMID: 26667071 DOI: 10.1146/annurev-physiol-021115-104929] [Cited by in Crossref: 115] [Cited by in F6Publishing: 120] [Article Influence: 16.4] [Reference Citation Analysis]
24 Komori H, Fujita D, Shirasaki Y, Zhu Q, Iwamoto Y, Nakanishi T, Nakajima M, Tamai I. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-Transporting Peptide 2B1/SLCO2B1 in Caco-2 Cells. Drug Metab Dispos 2021;49:803-9. [PMID: 34162689 DOI: 10.1124/dmd.121.000380] [Reference Citation Analysis]
25 Cui J, Zhou B, Ross SA, Zempleni J. Nutrition, microRNAs, and Human Health. Adv Nutr. 2017;8:105-112. [PMID: 28096131 DOI: 10.3945/an.116.013839] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 17.2] [Reference Citation Analysis]
26 Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, Giampieri F, Mezzetti B, Baldini N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021;11:87. [PMID: 33445656 DOI: 10.3390/biom11010087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
27 Fujita D, Arai T, Komori H, Shirasaki Y, Wakayama T, Nakanishi T, Tamai I. Apple-Derived Nanoparticles Modulate Expression of Organic-Anion-Transporting Polypeptide (OATP) 2B1 in Caco-2 Cells. Mol Pharm 2018;15:5772-80. [PMID: 30359033 DOI: 10.1021/acs.molpharmaceut.8b00921] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
28 Kim K, Jung JH, Yoo HJ, Hyun JK, Park JH, Na D, Yeon JH. Anti-Metastatic Effects of Plant Sap-Derived Extracellular Vesicles in a 3D Microfluidic Cancer Metastasis Model. J Funct Biomater 2020;11:E49. [PMID: 32650517 DOI: 10.3390/jfb11030049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Simbari F, McCaskill J, Coakley G, Millar M, Maizels RM, Fabriás G, Casas J, Buck AH. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J Extracell Vesicles 2016;5:30741. [PMID: 27389011 DOI: 10.3402/jev.v5.30741] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 7.3] [Reference Citation Analysis]
30 Lang C, Mission EG, Ahmad Fuaad AA, Shaalan M. Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability - A review. Journal of Cleaner Production 2021;293:126063. [DOI: 10.1016/j.jclepro.2021.126063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
31 Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Mol Ther 2016;24:1783-96. [PMID: 27491931 DOI: 10.1038/mt.2016.159] [Cited by in Crossref: 84] [Cited by in F6Publishing: 79] [Article Influence: 14.0] [Reference Citation Analysis]
32 Zhang X, Song H, Canup BSB, Xiao B. Orally delivered targeted nanotherapeutics for the treatment of colorectal cancer. Expert Opin Drug Deliv 2020;17:781-90. [PMID: 32237921 DOI: 10.1080/17425247.2020.1748005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. Small 2021;:e2105385. [PMID: 34897972 DOI: 10.1002/smll.202105385] [Reference Citation Analysis]
34 Fernandes M, Lopes I, Magalhães L, Sárria MP, Machado R, Sousa JC, Botelho C, Teixeira J, Gomes AC. Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. J Control Release 2021;336:130-43. [PMID: 34126168 DOI: 10.1016/j.jconrel.2021.06.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Stanly C, Kim H, Antonucci G, Fiume I, Guescini M, Kim KP, Ciardiello MA, Giangrieco I, Mari A, Pocsfalvi G. Crosstalk Between the Immune System and Plant-Derived Nanovesicles: A Study of Allergen Transporting. Front Bioeng Biotechnol 2021;9:760730. [PMID: 34900959 DOI: 10.3389/fbioe.2021.760730] [Reference Citation Analysis]
36 Zu M, Song H, Zhang J, Chen Q, Deng S, Canup BS, Yuan Y, Xiao B. Lycium barbarum lipid-based edible nanoparticles protect against experimental colitis. Colloids and Surfaces B: Biointerfaces 2020;187:110747. [DOI: 10.1016/j.colsurfb.2019.110747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Kim K, Yoo HJ, Jung JH, Lee R, Hyun JK, Park JH, Na D, Yeon JH. Cytotoxic Effects of Plant Sap-Derived Extracellular Vesicles on Various Tumor Cell Types. J Funct Biomater 2020;11:E22. [PMID: 32252412 DOI: 10.3390/jfb11020022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
38 Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2021;29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
39 Peng C, Lu W, Fang Y. An insight into the effect of food nanoparticles on the metabolism of intestinal cells. Current Opinion in Food Science 2022;43:174-82. [DOI: 10.1016/j.cofs.2021.12.001] [Reference Citation Analysis]
40 Suresh AP, Kalarikkal SP, Pullareddy B, Sundaram GM. Low pH-Based Method to Increase the Yield of Plant-Derived Nanoparticles from Fresh Ginger Rhizomes. ACS Omega 2021;6:17635-41. [PMID: 34278148 DOI: 10.1021/acsomega.1c02162] [Reference Citation Analysis]
41 Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017;147:3-10. [PMID: 27852870 DOI: 10.3945/jn.116.238949] [Cited by in Crossref: 112] [Cited by in F6Publishing: 99] [Article Influence: 18.7] [Reference Citation Analysis]
42 Sanwlani R, Fonseka P, Mathivanan S. Are Dietary Extracellular Vesicles Bioavailable and Functional in Consuming Organisms? Subcell Biochem 2021;97:509-21. [PMID: 33779931 DOI: 10.1007/978-3-030-67171-6_21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Spinler JK, Karri V, Hirschi KD. Planting the Microbiome. Trends Microbiol 2019;27:90-3. [PMID: 30600139 DOI: 10.1016/j.tim.2018.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front Nutr 2021;8:586564. [PMID: 33768107 DOI: 10.3389/fnut.2021.586564] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. Tissue Eng Regen Med 2021;18:561-71. [PMID: 34313971 DOI: 10.1007/s13770-021-00367-8] [Reference Citation Analysis]
46 Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, Sugár S, Adamo G, Csizmadia T, Pocsfalvi G. Biomanufacturing of Tomato-Derived Nanovesicles. Foods 2020;9:E1852. [PMID: 33322632 DOI: 10.3390/foods9121852] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Santos Braga S. Ginger: Panacea or Consumer’s Hype? Applied Sciences 2019;9:1570. [DOI: 10.3390/app9081570] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
48 Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like Nanoparticles: A New Type of Nanocarrier. Curr Med Chem 2020;27:3888-905. [PMID: 30706777 DOI: 10.2174/0929867326666190129142604] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
49 Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, Sundaram K, Sriwastva MK, Zhang L, Hsieh M, Reiman R, Haribabu B, Yan J, Jala VR, Miller DM, Van Keuren-Jensen K, Merchant ML, McClain CJ, Park JW, Egilmez NK, Zhang HG. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe 2018;24:637-652.e8. [PMID: 30449315 DOI: 10.1016/j.chom.2018.10.001] [Cited by in Crossref: 157] [Cited by in F6Publishing: 147] [Article Influence: 39.3] [Reference Citation Analysis]
50 Raffo-Romero A, Arab T, Al-Amri IS, Le Marrec-Croq F, Van Camp C, Lemaire Q, Salzet M, Vizioli J, Sautiere PE, Lefebvre C. Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. Int J Mol Sci 2018;19:E4124. [PMID: 30572617 DOI: 10.3390/ijms19124124] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
51 Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther 2017;25:1641-54. [PMID: 28274798 DOI: 10.1016/j.ymthe.2017.01.025] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 14.4] [Reference Citation Analysis]
52 Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci Rep 2018;8:14644. [PMID: 30279553 DOI: 10.1038/s41598-018-32953-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
53 Hirschi KD. Genetically Modified Plants: Nutritious, Sustainable, yet Underrated. J Nutr 2020;150:2628-34. [PMID: 32725215 DOI: 10.1093/jn/nxaa220] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
54 Pérez-Bermúdez P, Blesa J, Soriano JM, Marcilla A. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. Eur J Pharm Sci 2017;98:40-50. [PMID: 27664331 DOI: 10.1016/j.ejps.2016.09.022] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
55 Pocsfalvi G, Turiák L, Ambrosone A, Del Gaudio P, Puska G, Fiume I, Silvestre T, Vékey K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J Plant Physiol 2018;229:111-21. [PMID: 30056374 DOI: 10.1016/j.jplph.2018.07.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
56 Yang J, Farmer LM, Agyekum AA, Elbaz-Younes I, Hirschi KD. Detection of an Abundant Plant-Based Small RNA in Healthy Consumers. PLoS One 2015;10:e0137516. [PMID: 26335106 DOI: 10.1371/journal.pone.0137516] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
57 Li M, Chen T, Wang R, Luo JY, He JJ, Ye RS, Xie MY, Xi QY, Jiang QY, Sun JJ, Zhang YL. Plant MIR156 regulates intestinal growth in mammals by targeting the Wnt/β-catenin pathway. Am J Physiol Cell Physiol 2019;317:C434-48. [PMID: 31166713 DOI: 10.1152/ajpcell.00030.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
58 Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, Lu W, Wei Q, Ye J, Cai X, Hu C, Yin X, Cao P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019;7:326. [PMID: 31775862 DOI: 10.1186/s40425-019-0817-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
59 Munir J, Lee M, Ryu S. Exosomes in Food: Health Benefits and Clinical Relevance in Diseases. Adv Nutr 2020;11:687-96. [PMID: 31796948 DOI: 10.1093/advances/nmz123] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
60 Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing. J Agric Food Chem 2018;66:2749-57. [PMID: 29478310 DOI: 10.1021/acs.jafc.7b05614] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
61 Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.05.006] [Reference Citation Analysis]
62 Arntz OJ, Pieters BC, Oliveira MC, Broeren MG, Bennink MB, de Vries M, van Lent PL, Koenders MI, van den Berg WB, van der Kraan PM, van de Loo FA. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 2015;59:1701-12. [PMID: 26047123 DOI: 10.1002/mnfr.201500222] [Cited by in Crossref: 118] [Cited by in F6Publishing: 112] [Article Influence: 16.9] [Reference Citation Analysis]
63 Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ 2020;8:e9567. [PMID: 32995073 DOI: 10.7717/peerj.9567] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
64 Paganini C, Capasso Palmiero U, Pocsfalvi G, Touzet N, Bongiovanni A, Arosio P. Scalable Production and Isolation of Extracellular Vesicles: Available Sources and Lessons from Current Industrial Bioprocesses. Biotechnol J 2019;14:e1800528. [PMID: 31140717 DOI: 10.1002/biot.201800528] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
65 Iravani S, Varma RS. Plant-Derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-Delivery. ACS Sustainable Chem Eng 2019;7:8055-69. [DOI: 10.1021/acssuschemeng.9b00954] [Cited by in Crossref: 44] [Cited by in F6Publishing: 15] [Article Influence: 14.7] [Reference Citation Analysis]
66 Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 2016;4:e1134415. [PMID: 27358751 DOI: 10.1080/21688370.2015.1134415] [Cited by in Crossref: 98] [Cited by in F6Publishing: 80] [Article Influence: 16.3] [Reference Citation Analysis]
67 Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: From anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie 2020;171-172:103-9. [PMID: 32109502 DOI: 10.1016/j.biochi.2020.02.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
68 Middleton H, Yergeau É, Monard C, Combier J, El Amrani A. Rhizospheric Plant–Microbe Interactions: miRNAs as a Key Mediator. Trends in Plant Science 2021;26:132-41. [DOI: 10.1016/j.tplants.2020.09.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
69 Chen X, Liu B, Li X, An TT, Zhou Y, Li G, Wu-Smart J, Alvarez S, Naldrett MJ, Eudy J, Kubik G, Wilson RA, Kachman SD, Cui J, Yu J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles 2021;10:e12069. [PMID: 33613874 DOI: 10.1002/jev2.12069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
70 Bondhopadhyay B, Sisodiya S, Alzahrani FA, Bakhrebah MA, Chikara A, Kasherwal V, Khan A, Rani J, Dar SA, Akhter N, Tanwar P, Agrawal U, Hussain S. Exosomes: A Forthcoming Era of Breast Cancer Therapeutics. Cancers (Basel) 2021;13:4672. [PMID: 34572899 DOI: 10.3390/cancers13184672] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In Vitro Wound Healing Activity of Wheat-Derived Nanovesicles. Appl Biochem Biotechnol 2019;188:381-94. [PMID: 30474796 DOI: 10.1007/s12010-018-2913-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
72 Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, Ma J, Tang Q, Jin L, Li X, Li M. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 2018;6:e5186. [PMID: 30083436 DOI: 10.7717/peerj.5186] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 14.8] [Reference Citation Analysis]
73 Woith E, Melzig MF. Extracellular Vesicles from Fresh and Dried Plants-Simultaneous Purification and Visualization Using Gel Electrophoresis. Int J Mol Sci 2019;20:E357. [PMID: 30654488 DOI: 10.3390/ijms20020357] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
74 Kameli N, Dragojlovic-Kerkache A, Savelkoul P, Stassen FR. Plant-Derived Extracellular Vesicles: Current Findings, Challenges, and Future Applications. Membranes (Basel) 2021;11:411. [PMID: 34072600 DOI: 10.3390/membranes11060411] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Zhou G, Zhou Y, Chen X. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs. Front Microbiol 2017;8:768. [PMID: 28507539 DOI: 10.3389/fmicb.2017.00768] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
76 Askenase PW. Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'. RNA Biol 2021;:1-16. [PMID: 33944671 DOI: 10.1080/15476286.2021.1885189] [Reference Citation Analysis]
77 Suharta S, Barlian A, Hidajah AC, Notobroto HB, Ana ID, Indariani S, Wungu TDK, Wijaya CH. Plant-derived exosome-like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J Food Sci 2021;86:2838-50. [PMID: 34151426 DOI: 10.1111/1750-3841.15787] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Bruno SP, Paolini A, D'Oria V, Sarra A, Sennato S, Bordi F, Masotti A. Extracellular Vesicles Derived From Citrus sinensis Modulate Inflammatory Genes and Tight Junctions in a Human Model of Intestinal Epithelium. Front Nutr 2021;8:778998. [PMID: 34901124 DOI: 10.3389/fnut.2021.778998] [Reference Citation Analysis]
79 Yuan C, Steer CJ, Subramanian S. Host⁻MicroRNA⁻Microbiota Interactions in Colorectal Cancer. Genes (Basel) 2019;10:E270. [PMID: 30987065 DOI: 10.3390/genes10040270] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
80 Özkan İ, Koçak P, Yıldırım M, Ünsal N, Yılmaz H, Telci D, Şahin F. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci Rep 2021;11:14773. [PMID: 34285262 DOI: 10.1038/s41598-021-93876-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617-638. [PMID: 29795272 DOI: 10.1038/s41571-018-0036-9] [Cited by in Crossref: 457] [Cited by in F6Publishing: 455] [Article Influence: 152.3] [Reference Citation Analysis]
82 Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee SW, Uchiyama K. Uptake of MicroRNAs from Exosome-Like Nanovesicles of Edible Plant Juice by Rat Enterocytes. Int J Mol Sci 2021;22:3749. [PMID: 33916868 DOI: 10.3390/ijms22073749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020;15:6485-502. [PMID: 32922012 DOI: 10.2147/IJN.S238099] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
84 Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021;8:718093. [PMID: 34778332 DOI: 10.3389/fnut.2021.718093] [Reference Citation Analysis]
85 Yu L, Deng Z, Liu L, Zhang W, Wang C. Plant-Derived Nanovesicles: A Novel Form of Nanomedicine. Front Bioeng Biotechnol 2020;8:584391. [PMID: 33154966 DOI: 10.3389/fbioe.2020.584391] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
86 Kim H, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y. Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers (Basel) 2021;13:4435. [PMID: 34503245 DOI: 10.3390/cancers13174435] [Reference Citation Analysis]
87 Chen C, Sun M, Liu X, Wu W, Su L, Li Y, Liu G, Yan X. General and mild modification of food-derived extracellular vesicles for enhanced cell targeting. Nanoscale 2021;13:3061-9. [PMID: 33521806 DOI: 10.1039/d0nr06309f] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Yu S, Zhao Z, Xu X, Li M, Li P. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chemistry 2019;272:372-8. [DOI: 10.1016/j.foodchem.2018.08.059] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
89 Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int J Environ Res Public Health 2015;12:13981-4020. [PMID: 26529003 DOI: 10.3390/ijerph121113981] [Cited by in Crossref: 97] [Cited by in F6Publishing: 89] [Article Influence: 13.9] [Reference Citation Analysis]
90 Han JM, Song HY, Lim ST, Kim KI, Seo HS, Byun EB. Immunostimulatory Potential of Extracellular Vesicles Isolated from an Edible Plant, Petasites japonicus, via the Induction of Murine Dendritic Cell Maturation. Int J Mol Sci 2021;22:10634. [PMID: 34638974 DOI: 10.3390/ijms221910634] [Reference Citation Analysis]
91 Ledda B, Ottaggio L, Izzotti A, Sukkar SG, Miele M. Small RNAs in eucaryotes: new clues for amplifying microRNA benefits. Cell Biosci 2020;10:1. [PMID: 31911829 DOI: 10.1186/s13578-019-0370-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
92 Kırbaş OK, Bozkurt BT, Asutay AB, Mat B, Ozdemir B, Öztürkoğlu D, Ölmez H, İşlek Z, Şahin F, Taşlı PN. Optimized Isolation of Extracellular Vesicles From Various Organic Sources Using Aqueous Two-Phase System. Sci Rep 2019;9:19159. [PMID: 31844310 DOI: 10.1038/s41598-019-55477-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
93 Zhang HG, Cao P, Teng Y, Hu X, Wang Q, Yeri AS, Zhuang X, Samykutty A, Mu J, Deng ZB, Zhang L, Mobley JA, Yan J, Van Keuren-Jensen K, Miller D. Isolation, identification, and characterization of novel nanovesicles. Oncotarget 2016;7:41346-62. [PMID: 27191656 DOI: 10.18632/oncotarget.9325] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
94 Pinheiro A, Silva AM, Teixeira JH, Gonçalves RM, Almeida MI, Barbosa MA, Santos SG. Extracellular vesicles: intelligent delivery strategies for therapeutic applications. J Control Release 2018;289:56-69. [PMID: 30261205 DOI: 10.1016/j.jconrel.2018.09.019] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
95 Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N, Sanati-Nezhad A. Publication Trends in Exosomes Nanoparticles for Cancer Detection. Int J Nanomedicine 2020;15:4453-70. [PMID: 32617003 DOI: 10.2147/IJN.S247210] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
96 Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015;4:28713. [PMID: 26610593 DOI: 10.3402/jev.v4.28713] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 12.6] [Reference Citation Analysis]
97 Barteneva NS, Baiken Y, Fasler-kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2017;1868:372-93. [DOI: 10.1016/j.bbcan.2017.06.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
98 Matic S, D’souza DH, Wu T, Pangloli P, Dia VP. Bovine Milk Exosomes Affect Proliferation and Protect Macrophages against Cisplatin-Induced Cytotoxicity. Immunological Investigations 2020;49:711-25. [DOI: 10.1080/08820139.2020.1769647] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
99 Wang W, Liu D, Zhang X, Chen D, Cheng Y, Shen F. Plant MicroRNAs in Cross-Kingdom Regulation of Gene Expression. Int J Mol Sci 2018;19:E2007. [PMID: 29996470 DOI: 10.3390/ijms19072007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
100 Rahimi Ghiasi M, Rahimi E, Amirkhani Z, Salehi R. Leucine-rich Repeat-containing G-protein Coupled Receptor 5 Gene Overexpression of the Rat Small Intestinal Progenitor Cells in Response to Orally Administered Grape Exosome-like Nanovesicles. Adv Biomed Res 2018;7:125. [PMID: 30211138 DOI: 10.4103/abr.abr_114_18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
101 O'Farrell HE, Yang IA. Extracellular vesicles in chronic obstructive pulmonary disease (COPD). J Thorac Dis 2019;11:S2141-54. [PMID: 31737342 DOI: 10.21037/jtd.2019.10.16] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
102 Teodori L, Petrignani I, Giuliani A, Prattichizzo F, Gurău F, Matacchione G, Olivieri F, Coppari S, Albertini MC. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development 2019;182:111127. [DOI: 10.1016/j.mad.2019.111127] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
103 Ispanixtlahuatl-meráz O, Schins RPF, Chirino YI. Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environ Sci : Nano 2018;5:228-45. [DOI: 10.1039/c7en00704c] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
104 Layton E, Fairhurst AM, Griffiths-Jones S, Grencis RK, Roberts IS. Regulatory RNAs: A Universal Language for Inter-Domain Communication. Int J Mol Sci 2020;21:E8919. [PMID: 33255483 DOI: 10.3390/ijms21238919] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
105 Marzotto M, Bonafini C, Olioso D, Baruzzi A, Bettinetti L, Di Leva F, Galbiati E, Bellavite P. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype. PLoS One 2016;11:e0166340. [PMID: 27832158 DOI: 10.1371/journal.pone.0166340] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
106 Kandimalla R, Aqil F, Tyagi N, Gupta R. Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer. Am J Reprod Immunol 2021;85:e13349. [PMID: 32966664 DOI: 10.1111/aji.13349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
107 Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016;32:65-74. [PMID: 27238186 DOI: 10.1016/j.arr.2016.05.001] [Cited by in Crossref: 106] [Cited by in F6Publishing: 107] [Article Influence: 17.7] [Reference Citation Analysis]
108 Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, D'Elia D, Tullo A, Catalano D. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction. Front Genet 2020;11:552490. [PMID: 33193626 DOI: 10.3389/fgene.2020.552490] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Chukhchin DG, Bolotova K, Sinelnikov I, Churilov D, Novozhilov E. Exosomes in the phloem and xylem of woody plants. Planta 2019;251:12. [PMID: 31776666 DOI: 10.1007/s00425-019-03315-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
110 Morishita M, Horita M, Higuchi A, Marui M, Katsumi H, Yamamoto A. Characterizing Different Probiotic-Derived Extracellular Vesicles as a Novel Adjuvant for Immunotherapy. Mol Pharm 2021;18:1080-92. [PMID: 33554596 DOI: 10.1021/acs.molpharmaceut.0c01011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Zempleni J. Milk exosomes: beyond dietary microRNAs. Genes Nutr 2017;12:12. [PMID: 28694874 DOI: 10.1186/s12263-017-0562-6] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 6.4] [Reference Citation Analysis]
112 Mendez R, Banerjee S. Sonication-Based Basic Protocol for Liposome Synthesis. Methods Mol Biol 2017;1609:255-60. [PMID: 28660588 DOI: 10.1007/978-1-4939-6996-8_21] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
113 Wang Y, Wang Q, Wei X, Shao J, Zhao J, Zhang Z, Chen Z, Bai Y, Wang N, Wang Y, Li M, Zhai X. Global scientific trends on exosome research during 2007-2016: a bibliometric analysis. Oncotarget 2017;8:48460-70. [PMID: 28477015 DOI: 10.18632/oncotarget.17223] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
114 Yang J, Hotz T, Broadnax L, Yarmarkovich M, Elbaz-Younes I, Hirschi KD. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. Sci Rep 2016;6:26834. [PMID: 27251858 DOI: 10.1038/srep26834] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
115 Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res 2015;75:2520-9. [PMID: 25883092 DOI: 10.1158/0008-5472.CAN-14-3095] [Cited by in Crossref: 88] [Cited by in F6Publishing: 54] [Article Influence: 12.6] [Reference Citation Analysis]
116 De Palma M, Ambrosone A, Leone A, Del Gaudio P, Ruocco M, Turiák L, Bokka R, Fiume I, Tucci M, Pocsfalvi G. Plant Roots Release Small Extracellular Vesicles with Antifungal Activity. Plants (Basel) 2020;9:E1777. [PMID: 33333782 DOI: 10.3390/plants9121777] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
117 Shandilya S, Rani P, Onteru SK, Singh D. Small Interfering RNA in Milk Exosomes Is Resistant to Digestion and Crosses the Intestinal Barrier In Vitro. J Agric Food Chem 2017;65:9506-13. [DOI: 10.1021/acs.jafc.7b03123] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
118 Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019;20:E5695. [PMID: 31739393 DOI: 10.3390/ijms20225695] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 21.0] [Reference Citation Analysis]
119 Wei QY, He KM, Chen JL, Xu YM, Lau ATY. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019;24:E4246. [PMID: 31766544 DOI: 10.3390/molecules24234246] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
120 Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine (Lond) 2017;12:1927-43. [PMID: 28665164 DOI: 10.2217/nnm-2017-0196] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 10.2] [Reference Citation Analysis]
121 Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: a critical assessment. Protoplasma 2016;253:31-43. [DOI: 10.1007/s00709-015-0887-1] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 8.6] [Reference Citation Analysis]
122 Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnology 2020;18:100. [PMID: 32690102 DOI: 10.1186/s12951-020-00656-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
123 Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2018;24:1401-15. [PMID: 29788186 DOI: 10.1093/ibd/izy123] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
124 Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of Garlic-Derived Nanovesicles on Liver Cells is Triggered by Interaction With CD98. ACS Omega 2020;5:23118-28. [PMID: 32954162 DOI: 10.1021/acsomega.0c02893] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
125 Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep 2021;11:22818. [PMID: 34819568 DOI: 10.1038/s41598-021-02241-y] [Reference Citation Analysis]
126 Narauskaitė D, Vydmantaitė G, Rusteikaitė J, Sampath R, Rudaitytė A, Stašytė G, Aparicio Calvente MI, Jekabsone A. Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel) 2021;14:811. [PMID: 34451909 DOI: 10.3390/ph14080811] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Merchant ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. iScience 2019;21:308-27. [PMID: 31678913 DOI: 10.1016/j.isci.2019.10.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
128 Kim YK, Choi Y, Nam GH, Kim IS. Functionalized exosome harboring bioactive molecules for cancer therapy. Cancer Lett 2020;489:155-62. [PMID: 32623071 DOI: 10.1016/j.canlet.2020.05.036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
129 Stanly C, Alfieri M, Ambrosone A, Leone A, Fiume I, Pocsfalvi G. Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line. Cells 2020;9:E2722. [PMID: 33371199 DOI: 10.3390/cells9122722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
130 Zeng L, Wang H, Shi W, Chen L, Chen T, Chen G, Wang W, Lan J, Huang Z, Zhang J, Chen J. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnology 2021;19:439. [PMID: 34930289 DOI: 10.1186/s12951-021-01195-7] [Reference Citation Analysis]
131 Cong M, Tan S, Li S, Gao L, Huang L, Zhang H, Qiao H. Technology insight: plant-derived vesicles—how far from the clinical biotherapeutics and therapeutic drug carriers? Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2021.114108] [Reference Citation Analysis]
132 Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. Mol Plant Pathol 2020;21:589-601. [PMID: 32027079 DOI: 10.1111/mpp.12911] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
133 Nagarajah S. Exosome Secretion - More Than Simple Waste Disposal? Implications for Physiology, Diagnostics and Therapeutics. J Circ Biomark 2016;5:7. [PMID: 28936255 DOI: 10.5772/62975] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
134 Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, de Gonzalo-Calvo D. Dietary microRNAs and cancer: A new therapeutic approach? Semin Cancer Biol 2021;73:19-29. [PMID: 33086083 DOI: 10.1016/j.semcancer.2020.10.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018;15:68. [PMID: 30302122 DOI: 10.1186/s12986-018-0305-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
136 Reiner AT, Somoza V. Extracellular Vesicles as Vehicles for the Delivery of Food Bioactives. J Agric Food Chem 2019;67:2113-9. [DOI: 10.1021/acs.jafc.8b06369] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
137 Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond) 2016;11:1745-56. [PMID: 27348448 DOI: 10.2217/nnm-2016-0102] [Cited by in Crossref: 87] [Cited by in F6Publishing: 89] [Article Influence: 14.5] [Reference Citation Analysis]
138 [DOI: 10.1101/791111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
139 Yong SB, Chung JY, Song Y, Kim YH. Recent challenges and advances in genetically-engineered cell therapy. J Pharm Investig 2018;48:199-208. [PMID: 30680249 DOI: 10.1007/s40005-017-0381-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
140 Zhou Q, Ma K, Hu H, Xing X, Huang X, Gao H. Extracellular vesicles: Their functions in plant-pathogen interactions. Mol Plant Pathol 2021. [PMID: 34873812 DOI: 10.1111/mpp.13170] [Reference Citation Analysis]
141 Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096-122. [PMID: 33336066 DOI: 10.1515/med-2020-0160] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
142 Shehzad A, Islam SU, Shahzad R, Khan S, Lee YS. Extracellular vesicles in cancer diagnostics and therapeutics. Pharmacol Ther 2021;223:107806. [PMID: 33465400 DOI: 10.1016/j.pharmthera.2021.107806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
143 Tastan B, Tarakcioglu E, Birinci Y, Park Y, Genc S. Role of Exosomal MicroRNAs in Cell-to-Cell Communication. Methods Mol Biol 2022;2257:269-92. [PMID: 34432284 DOI: 10.1007/978-1-0716-1170-8_14] [Reference Citation Analysis]
144 Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-Dependent Polymerase Chain Reaction and Elimination of Confounders in Sample Collection, Storage, and Analysis Strengthen Evidence That microRNAs in Bovine Milk Are Bioavailable in Humans. J Nutr 2018;148:153-9. [PMID: 29378054 DOI: 10.1093/jn/nxx024] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
145 Cho EG, Choi SY, Kim H, Choi EJ, Lee EJ, Park PJ, Ko J, Kim KP, Baek HS. Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021;10:486. [PMID: 33668388 DOI: 10.3390/cells10030486] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
146 De Robertis M, Sarra A, D'Oria V, Mura F, Bordi F, Postorino P, Fratantonio D. Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-α-Induced Change on Gene Expression in EA.hy926 Cells. Biomolecules 2020;10:E742. [PMID: 32397678 DOI: 10.3390/biom10050742] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
147 Xie MY, Chen T, Xi QY, Hou LJ, Luo JY, Zeng B, Li M, Sun JJ, Zhang YL. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage. Biochem Pharmacol 2020;175:113898. [PMID: 32145262 DOI: 10.1016/j.bcp.2020.113898] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
148 Mammadova R, Fiume I, Bokka R, Kralj-Iglič V, Božič D, Kisovec M, Podobnik M, Zavec AB, Hočevar M, Gellén G, Schlosser G, Pocsfalvi G. Identification of Tomato Infecting Viruses That Co-Isolate with Nanovesicles Using a Combined Proteomics and Electron-Microscopic Approach. Nanomaterials (Basel) 2021;11:1922. [PMID: 34443753 DOI: 10.3390/nano11081922] [Reference Citation Analysis]
149 Stanly C, Moubarak M, Fiume I, Turiák L, Pocsfalvi G. Membrane Transporters in Citrus clementina Fruit Juice-Derived Nanovesicles. Int J Mol Sci 2019;20:E6205. [PMID: 31835328 DOI: 10.3390/ijms20246205] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
150 Lee R, Ko HJ, Kim K, Sohn Y, Min SY, Kim JA, Na D, Yeon JH. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles 2020;9:1703480. [PMID: 32002169 DOI: 10.1080/20013078.2019.1703480] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
151 You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021;6:4321-32. [PMID: 33997509 DOI: 10.1016/j.bioactmat.2021.04.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
152 Zhang L, He F, Gao L, Cong M, Sun J, Xu J, Wang Y, Hu Y, Asghar S, Hu L, Qiao H. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int J Nanomedicine 2021;16:1575-86. [PMID: 33664572 DOI: 10.2147/IJN.S293067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J Adv Res 2020;23:101-11. [PMID: 32089878 DOI: 10.1016/j.jare.2020.02.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
154 Gu H, Overstreet AC, Yang Y. Exosomes Biogenesis and Potentials in Disease Diagnosis and Drug Delivery. Nano LIFE 2014;04:1441017. [DOI: 10.1142/s1793984414410177] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
155 Arai M, Komori H, Fujita D, Tamai I. Uptake Pathway of Apple-derived Nanoparticle by Intestinal Cells to Deliver its Cargo. Pharm Res 2021;38:523-30. [PMID: 33723795 DOI: 10.1007/s11095-021-03018-8] [Reference Citation Analysis]
156 Soleti R, Andriantsitohaina R, Martinez MC. Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Archives of Biochemistry and Biophysics 2018;644:57-63. [DOI: 10.1016/j.abb.2018.03.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
157 Akao Y, Kuranaga Y, Heishima K, Sugito N, Morikawa K, Ito Y, Soga T, Ito T. Plant hvu-MIR168-3p enhances expression of glucose transporter 1 (SLC2A1) in human cells by silencing genes related to mitochondrial electron transport chain complex I. J Nutr Biochem 2021;101:108922. [PMID: 34856354 DOI: 10.1016/j.jnutbio.2021.108922] [Reference Citation Analysis]
158 Alfieri M, Leone A, Ambrosone A. Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021;13:498. [PMID: 33917448 DOI: 10.3390/pharmaceutics13040498] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021;13:724. [PMID: 33668787 DOI: 10.3390/nu13030724] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
160 Sarvarian P, Samadi P, Gholipour E, Shams Asenjan K, Hojjat-Farsangi M, Motavalli R, Motavalli Khiavi F, Yousefi M. Application of Emerging Plant-Derived Nanoparticles as a Novel Approach for Nano-Drug Delivery Systems. Immunol Invest 2021;:1-21. [PMID: 33627016 DOI: 10.1080/08820139.2021.1891094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Yang C, Zhang M, Merlin D. Advances in Plant-derived Edible Nanoparticle-based lipid Nano-drug Delivery Systems as Therapeutic Nanomedicines. J Mater Chem B 2018;6:1312-21. [PMID: 30034807 DOI: 10.1039/C7TB03207B] [Cited by in Crossref: 63] [Cited by in F6Publishing: 31] [Article Influence: 15.8] [Reference Citation Analysis]
162 Liu B, Li X, Yu H, Shi X, Zhou Y, Alvarez S, Naldrett MJ, Kachman SD, Ro SH, Sun X, Chung S, Jing L, Yu J. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics 2021;11:9311-30. [PMID: 34646372 DOI: 10.7150/thno.60265] [Reference Citation Analysis]
163 Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Gupta R. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. AAPS J 2017;19:1691-702. [PMID: 29047044 DOI: 10.1208/s12248-017-0154-9] [Cited by in Crossref: 85] [Cited by in F6Publishing: 86] [Article Influence: 17.0] [Reference Citation Analysis]
164 Urzì O, Raimondo S, Alessandro R. Extracellular Vesicles from Plants: Current Knowledge and Open Questions. Int J Mol Sci 2021;22:5366. [PMID: 34065193 DOI: 10.3390/ijms22105366] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019;210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
166 Bordea IR, Candrea S, Alexescu GT, Bran S, Băciuț M, Băciuț G, Lucaciu O, Dinu CM, Todea DA. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev 2020;52:319-32. [PMID: 32393070 DOI: 10.1080/03602532.2020.1758713] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
167 Palazzolo S, Memeo L, Hadla M, Duzagac F, Steffan A, Perin T, Canzonieri V, Tuccinardi T, Caligiuri I, Rizzolio F. Cancer Extracellular Vesicles: Next-Generation Diagnostic and Drug Delivery Nanotools. Cancers (Basel) 2020;12:E3165. [PMID: 33126572 DOI: 10.3390/cancers12113165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
168 Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. Genes Nutr 2017;12:13. [PMID: 29308096 DOI: 10.1186/s12263-017-0561-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
169 Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, Miyado K, Higashi Y, Ochi M. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med. 2016;5:1620-1630. [PMID: 27460850 DOI: 10.5966/sctm.2015-0285] [Cited by in Crossref: 189] [Cited by in F6Publishing: 197] [Article Influence: 31.5] [Reference Citation Analysis]
170 Kim DK, Rhee WJ. Antioxidative Effects of Carrot-Derived Nanovesicles in Cardiomyoblast and Neuroblastoma Cells. Pharmaceutics 2021;13:1203. [PMID: 34452164 DOI: 10.3390/pharmaceutics13081203] [Reference Citation Analysis]
171 Chen X, Zhou Y, Yu J. Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation. Mol Pharm 2019;16:2690-9. [PMID: 31038962 DOI: 10.1021/acs.molpharmaceut.9b00246] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
172 Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, Gattabria F, Galgani A, Sessa L, Mattei M, Canini A, Muleo R, Colizzi V, Montesano C. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 2018;8:12413. [PMID: 30120339 DOI: 10.1038/s41598-018-30718-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
173 Kawamura Y, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci 2017;108:824-30. [PMID: 28256033 DOI: 10.1111/cas.13222] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 10.4] [Reference Citation Analysis]
174 Woith E, Guerriero G, Hausman JF, Renaut J, Leclercq CC, Weise C, Legay S, Weng A, Melzig MF. Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int J Mol Sci 2021;22:3719. [PMID: 33918442 DOI: 10.3390/ijms22073719] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
175 Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021;178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019;11:eaav8521. [PMID: 31092696 DOI: 10.1126/scitranslmed.aav8521] [Cited by in Crossref: 216] [Cited by in F6Publishing: 218] [Article Influence: 108.0] [Reference Citation Analysis]
177 Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016;101:321-40. [PMID: 27318094 DOI: 10.1016/j.biomaterials.2016.06.018] [Cited by in Crossref: 162] [Cited by in F6Publishing: 144] [Article Influence: 27.0] [Reference Citation Analysis]
178 Umezu T, Takanashi M, Murakami Y, Ohno SI, Kanekura K, Sudo K, Nagamine K, Takeuchi S, Ochiya T, Kuroda M. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev 2021;21:199-208. [PMID: 33850951 DOI: 10.1016/j.omtm.2021.03.006] [Reference Citation Analysis]
179 Liu Y, Wu S, Koo Y, Yang A, Dai Y, Khant H, Osman SR, Chowdhury M, Wei H, Li Y, Court K, Hwang E, Wen Y, Dasari SK, Nguyen M, Tang EC, Chehab EW, de Val N, Braam J, Sood AK. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine 2020;29:102271. [PMID: 32702466 DOI: 10.1016/j.nano.2020.102271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
180 Majumdar R, Rajasekaran K, Cary JW. RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations. Front Plant Sci 2017;8:200. [PMID: 28261252 DOI: 10.3389/fpls.2017.00200] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 7.6] [Reference Citation Analysis]
181 Pirim D, Dogan B. In silico identification of putative roles of food-derived xeno-mirs on diet-associated cancer. Nutrition and Cancer 2020;72:481-8. [DOI: 10.1080/01635581.2019.1670854] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
182 Buccheri C, Festucci F, Potestà M, Roglia V, Bernardini R, Minutolo A, Montesano C, Adriani W. Micro-Vesicles of Moringa oleifera Seeds in Heterozygous Rats for DAT Gene: Effects of Oral Intake on Behavioral Profile and Hematological Parameters. Int J Environ Res Public Health 2021;18:2322. [PMID: 33652987 DOI: 10.3390/ijerph18052322] [Reference Citation Analysis]