BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 2014;58:1561-73. [PMID: 24842810 DOI: 10.1002/mnfr.201300729] [Cited by in Crossref: 256] [Cited by in F6Publishing: 269] [Article Influence: 28.4] [Reference Citation Analysis]
Number Citing Articles
1 Subha D, Harshnii K, Madhikiruba K, Nandhini M, Tamilselvi K. Plant derived exosome- like Nanovesicles: an updated overview. Plant Nano Biology 2023;3:100022. [DOI: 10.1016/j.plana.2022.100022] [Reference Citation Analysis]
2 Husain S, Nandi A, Simnani FZ, Saha U, Ghosh A, Sinha A, Sahay A, Samal SK, Panda PK, Verma SK. Emerging Trends in Advanced Translational Applications of Silver Nanoparticles: A Progressing Dawn of Nanotechnology. J Funct Biomater 2023;14. [PMID: 36662094 DOI: 10.3390/jfb14010047] [Reference Citation Analysis]
3 Jang J, Jeong H, Jang E, Kim E, Yoon Y, Jang S, Jeong HS, Jang G. Isolation of high-purity and high-stability exosomes from ginseng. Front Plant Sci 2022;13:1064412. [PMID: 36714697 DOI: 10.3389/fpls.2022.1064412] [Reference Citation Analysis]
4 Wang Y, Wei Y, Liao H, Fu H, Yang X, Xiang Q, Zhang S. Plant Exosome-like Nanoparticles as Biological Shuttles for Transdermal Drug Delivery. Bioengineering (Basel) 2023;10. [PMID: 36671676 DOI: 10.3390/bioengineering10010104] [Reference Citation Analysis]
5 Zhu M, Xu H, Liang Y, Xu J, Yue N, Zhang Y, Tian C, Yao J, Wang L, Nie Y, Li D. Edible exosome-like nanoparticles from Portulaca oleracea L prevent DSS-induced colitis via the promotion of double-positive CD4 + CD8 + T cells.. [DOI: 10.21203/rs.3.rs-2439295/v1] [Reference Citation Analysis]
6 Sheta M, Taha EA, Lu Y, Eguchi T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology (Basel) 2023;12. [PMID: 36671802 DOI: 10.3390/biology12010110] [Reference Citation Analysis]
7 Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023;24. [PMID: 36674442 DOI: 10.3390/ijms24020927] [Reference Citation Analysis]
8 Chen Q, Zu M, Gong H, Ma Y, Sun J, Ran S, Shi X, Zhang J, Xiao B. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation. J Nanobiotechnology 2023;21:6. [PMID: 36600299 DOI: 10.1186/s12951-022-01755-5] [Reference Citation Analysis]
9 Giancaterino S, Boi C. Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up. Biotechnol Adv 2023;63:108092. [PMID: 36608746 DOI: 10.1016/j.biotechadv.2022.108092] [Reference Citation Analysis]
10 Kim J, Zhu Y, Wang R, Wang J. Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines. Journal of Ginseng Research 2023. [DOI: 10.1016/j.jgr.2023.01.004] [Reference Citation Analysis]
11 Mendez R. Sonication-Based Basic Protocol for Liposome Synthesis. Methods Mol Biol 2023;2625:365-70. [PMID: 36653658 DOI: 10.1007/978-1-0716-2966-6_31] [Reference Citation Analysis]
12 Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023;353:1127-49. [PMID: 36528193 DOI: 10.1016/j.jconrel.2022.12.027] [Reference Citation Analysis]
13 Jackson KK, Mata C, Marcus RK. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta 2023;252:123779. [DOI: 10.1016/j.talanta.2022.123779] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yang S, Lu S, Ren L, Bian S, Zhao D, Liu M, Wang J. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing. J Ginseng Res 2023;47:133-43. [PMID: 36644388 DOI: 10.1016/j.jgr.2022.07.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Sim Y, Seo HJ, Kim DH, Lee SH, Kwon J, Kwun IS, Jung C, Kim JI, Lim JH, Kim DK, Baek MC, Cho YE. The Effect of Apple-Derived Nanovesicles on the Osteoblastogenesis of Osteoblastic MC3T3-E1 Cells. J Med Food 2023;26:49-58. [PMID: 36594993 DOI: 10.1089/jmf.2022.K.0094] [Reference Citation Analysis]
16 Cao Y, Zhao Q, Liu F, Zheng L, Lin X, Pan M, Tan X, Sun G, Zhao K. Drug Value of Drynariae Rhizoma Root-Derived Extracellular Vesicles for Neurodegenerative Diseases Based on Proteomics and Bioinformatics. Plant Signal Behav 2022;17:2129290. [PMID: 36196516 DOI: 10.1080/15592324.2022.2129290] [Reference Citation Analysis]
17 Sánchez-López CM, Manzaneque-López MC, Pérez-Bermúdez P, Soler C, Marcilla A. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct 2022. [PMID: 36441623 DOI: 10.1039/d2fo01806c] [Reference Citation Analysis]
18 Bian Y, Li W, Jiang X, Yin F, Yin L, Zhang Y, Guo H, Liu J. Garlic-derived exosomes carrying miR-396e shapes macrophage metabolic reprograming to mitigate the inflammatory response in obese adipose tissue. J Nutr Biochem 2022;113:109249. [PMID: 36496060 DOI: 10.1016/j.jnutbio.2022.109249] [Reference Citation Analysis]
19 Fan SJ, Chen JY, Tang CH, Zhao QY, Zhang JM, Qin YC. Edible plant extracellular vesicles: An emerging tool for bioactives delivery. Front Immunol 2022;13:1028418. [PMID: 36569896 DOI: 10.3389/fimmu.2022.1028418] [Reference Citation Analysis]
20 Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022;11:e12283. [PMID: 36519808 DOI: 10.1002/jev2.12283] [Reference Citation Analysis]
21 Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022;11:e12288. [PMID: 36450704 DOI: 10.1002/jev2.12288] [Reference Citation Analysis]
22 Lang C, Lin HT, Wu C, Alavi M. In Silico analysis of the sequence and structure of plant microRNAs packaged in extracellular vesicles. Computational Biology and Chemistry 2022;101:107771. [DOI: 10.1016/j.compbiolchem.2022.107771] [Reference Citation Analysis]
23 Jain N, Pandey M, Sharma P, Gupta G, Gorain B, Dua K. Recent developments in plant-derived edible nanoparticles as therapeutic nanomedicines. J Food Biochem 2022;46:e14479. [PMID: 36268842 DOI: 10.1111/jfbc.14479] [Reference Citation Analysis]
24 Zuzarte M, Vitorino C, Salgueiro L, Girão H. Plant Nanovesicles for Essential Oil Delivery. Pharmaceutics 2022;14. [PMID: 36559075 DOI: 10.3390/pharmaceutics14122581] [Reference Citation Analysis]
25 Wu J, Ma X, Lu Y, Zhang T, Du Z, Xu J, You J, Chen N, Deng X, Wu J. Edible Pueraria lobata-Derived Exosomes Promote M2 Macrophage Polarization. Molecules 2022;27. [PMID: 36500277 DOI: 10.3390/molecules27238184] [Reference Citation Analysis]
26 Qiao Z, Zhang K, Liu J, Cheng D, Yu B, Zhao N, Xu FJ. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat Commun 2022;13:7164. [PMID: 36418895 DOI: 10.1038/s41467-022-34883-5] [Reference Citation Analysis]
27 Wu Q, Li L, Jia Y, Xu T, Zhou X. Advances in studies of circulating microRNAs: origination, transportation, and distal target regulation. J Cell Commun Signal 2022. [DOI: 10.1007/s12079-022-00705-y] [Reference Citation Analysis]
28 Sasaki D, Kusamori K, Nishikawa M. Delivery of Corn-Derived Nanoparticles with Anticancer Activity to Tumor Tissues by Modification with Polyethylene Glycol for Cancer Therapy. Pharm Res 2022. [DOI: 10.1007/s11095-022-03431-7] [Reference Citation Analysis]
29 Teng Y, He J, Zhong Q, Zhang Y, Lu Z, Guan T, Pan Y, Luo X, Feng W, Ou C. Grape exosome-like nanoparticles: A potential therapeutic strategy for vascular calcification. Front Pharmacol 2022;13:1025768. [DOI: 10.3389/fphar.2022.1025768] [Reference Citation Analysis]
30 Zhu X, Wang T, Jia H, Wu F. Immunocyte‐Derived Nanodrugs for Cancer Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202207181] [Reference Citation Analysis]
31 Ly NP, Han HS, Kim M, Park JH, Choi KY. Plant-derived nanovesicles: Current understanding and applications for cancer therapy. Bioact Mater 2023;22:365-83. [PMID: 36311046 DOI: 10.1016/j.bioactmat.2022.10.005] [Reference Citation Analysis]
32 Gong Q, Zeng Z, Jiang T, Bai X, Pu C, Hao Y, Guo Y. Anti-fibrotic effect of extracellular vesicles derived from tea leaves in hepatic stellate cells and liver fibrosis mice. Front Nutr 2022;9:1009139. [PMID: 36276815 DOI: 10.3389/fnut.2022.1009139] [Reference Citation Analysis]
33 Del Pozo-Acebo L, de Las Hazas ML, Tomé-Carneiro J, Del Saz-Lara A, Gil-Zamorano J, Balaguer L, Chapado LA, Busto R, Visioli F, Dávalos A. Therapeutic potential of broccoli-derived extracellular vesicles as nanocarriers of exogenous miRNAs. Pharmacol Res 2022;:106472. [PMID: 36182038 DOI: 10.1016/j.phrs.2022.106472] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Warner JB, Guenthner SC, Hardesty JE, McClain CJ, Warner DR, Kirpich IA. Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease. World J Gastroenterol 2022; 28(36): 5280-5299 [DOI: 10.3748/wjg.v28.i36.5280] [Reference Citation Analysis]
35 Kim M, Park JH. Isolation of Aloe saponaria-Derived Extracellular Vesicles and Investigation of Their Potential for Chronic Wound Healing. Pharmaceutics 2022;14:1905. [DOI: 10.3390/pharmaceutics14091905] [Reference Citation Analysis]
36 Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022;13:902551. [DOI: 10.3389/fphar.2022.902551] [Reference Citation Analysis]
37 Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022;:e109288. [PMID: 36052513 DOI: 10.15252/embj.2021109288] [Reference Citation Analysis]
38 Eom J, Choi S, Kim H, Kim D, Bae J, Kwon G, Lee D, Hwang J, Kim D, Baek M, Cho Y. Hemp-Derived Nanovesicles Protect Leaky Gut and Liver Injury in Dextran Sodium Sulfate-Induced Colitis. IJMS 2022;23:9955. [DOI: 10.3390/ijms23179955] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Zhang W, Yuan Y, Li X, Luo J, Zhou Z, Yu L, Wang G. Orange-derived and dexamethasone-encapsulated extracellular vesicles reduced proteinuria and alleviated pathological lesions in IgA nephropathy by targeting intestinal lymphocytes. Front Immunol 2022;13:900963. [DOI: 10.3389/fimmu.2022.900963] [Reference Citation Analysis]
40 Fang Z, Liu K. Plant-derived extracellular vesicles as oral drug delivery carriers. J Control Release 2022;350:389-400. [PMID: 36037973 DOI: 10.1016/j.jconrel.2022.08.046] [Reference Citation Analysis]
41 Hossain MN, De Leo V, Tamborra R, Laselva O, Ingrosso C, Daniello V, Catucci L, Losito I, Sollitto F, Loizzi D, Conese M, Di Gioia S. Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L. (Broccoli). Sci Rep 2022;12:14362. [PMID: 35999223 DOI: 10.1038/s41598-022-17899-1] [Reference Citation Analysis]
42 Yang L, Jin W, Tang X, Zhang S, Ma R, Zhao D, Sun L. Ginseng-derived nanoparticles inhibit lung cancer cell epithelial mesenchymal transition by repressing pentose phosphate pathway activity. Front Oncol 2022;12:942020. [DOI: 10.3389/fonc.2022.942020] [Reference Citation Analysis]
43 Kang SJ, Kim SE, Seo M, Kim E, Rhee WJ. Suppression of inflammatory responses in macrophages by onion-derived extracellular vesicles. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.08.011] [Reference Citation Analysis]
44 Kocholata M, Maly J, Martinec J, Auer Malinska H. Plant extracellular vesicles and their potential in human health research, the practical approach. Physiol Res 2022;71:327-39. [PMID: 35904344 DOI: 10.33549/physiolres.934886] [Reference Citation Analysis]
45 Yeo Xian Ping J, Raj Neupane Y, Pastorin G. Extracellular Vesicles and Their Interplay with Biological Membranes. Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy 2022. [DOI: 10.5772/intechopen.101297] [Reference Citation Analysis]
46 Kim SQ, Kim K. Emergence of Edible Plant-Derived Nanovesicles as Functional Food Components and Nanocarriers for Therapeutics Delivery: Potentials in Human Health and Disease. Cells 2022;11:2232. [DOI: 10.3390/cells11142232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Raimondo S, Urzì O, Meraviglia S, Di Simone M, Corsale AM, Rabienezhad Ganji N, Palumbo Piccionello A, Polito G, Lo Presti E, Dieli F, Conigliaro A, Alessandro R. Anti‐inflammatory properties of lemon‐derived extracellular vesicles are achieved through the inhibition of ERK / NF‐κB signalling pathways. J Cellular Molecular Medi. [DOI: 10.1111/jcmm.17404] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Zhang Z, Yu Y, Zhu G, Zeng L, Xu S, Cheng H, Ouyang Z, Chen J, Pathak JL, Wu L, Yu L. The Emerging Role of Plant-Derived Exosomes-Like Nanoparticles in Immune Regulation and Periodontitis Treatment. Front Immunol 2022;13:896745. [PMID: 35757759 DOI: 10.3389/fimmu.2022.896745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Cai H, Huang L, Hong R, Song J, Guo X, Zhou W, Hu Z, Wang W, Wang Y, Shen J, Qi S. Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3β Signaling Pathway. Front Pharmacol 2022;13:908830. [DOI: 10.3389/fphar.2022.908830] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Fu W, Li T, Chen H, Zhu S, Zhou C. Research Progress in Exosome-Based Nanoscale Drug Carriers in Tumor Therapies. Front Oncol 2022;12:919279. [DOI: 10.3389/fonc.2022.919279] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Li C, Song Q, Yin X, Song R, Chen G. Preparation, Characterization, and In Vitro Anticancer Activity Evaluation of Broccoli-Derived Extracellular Vesicle-Coated Astaxanthin Nanoparticles. Molecules 2022;27:3955. [PMID: 35745077 DOI: 10.3390/molecules27123955] [Reference Citation Analysis]
52 Wang Y, Wang J, Ma J, Zhou Y, Lu R. Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles. Pharmaceuticals 2022;15:708. [DOI: 10.3390/ph15060708] [Reference Citation Analysis]
53 Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022;10:849905. [PMID: 35646926 DOI: 10.3389/fcell.2022.849905] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
54 Farley JT, Eldahshoury MK, de Marcos Lousa C. Unconventional Secretion of Plant Extracellular Vesicles and Their Benefits to Human Health: A Mini Review. Front Cell Dev Biol 2022;10:883841. [DOI: 10.3389/fcell.2022.883841] [Reference Citation Analysis]
55 Mahdipour E. Beta vulgaris juice contains biologically active exosome-like nanoparticles. Tissue and Cell 2022;76:101800. [DOI: 10.1016/j.tice.2022.101800] [Reference Citation Analysis]
56 Askenase PW. Exosome Carrier Effects; Resistance to Digestion in Phagolysosomes May Assist Transfers to Targeted Cells; II Transfers of miRNAs Are Better Analyzed via Systems Approach as They Do Not Fit Conventional Reductionist Stoichiometric Concepts. IJMS 2022;23:6192. [DOI: 10.3390/ijms23116192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M, Rasmi Y, Golezani AG, Rezaie J. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal 2022;20:69. [PMID: 35606749 DOI: 10.1186/s12964-022-00889-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
58 Anusha R, Priya S. Dietary Exosome-Like Nanoparticles: An Updated Review on Their Pharmacological and Drug Delivery Applications. Mol Nutr Food Res 2022;:e2200142. [PMID: 35593481 DOI: 10.1002/mnfr.202200142] [Reference Citation Analysis]
59 Li D, Yao X, Yue J, Fang Y, Cao G, Midgley AC, Nishinari K, Yang Y. Advances in Bioactivity of MicroRNAs of Plant-Derived Exosome-Like Nanoparticles and Milk-Derived Extracellular Vesicles. J Agric Food Chem 2022. [PMID: 35583385 DOI: 10.1021/acs.jafc.2c00631] [Reference Citation Analysis]
60 Olga J, Regina H, Alena S, David P, Michaela L, Malinska HA, Jan M. Conventional and Nonconventional Sources of Exosomes–Isolation Methods and Influence on Their Downstream Biomedical Application. Front Mol Biosci 2022;9:846650. [DOI: 10.3389/fmolb.2022.846650] [Reference Citation Analysis]
61 Liu C, Yan X, Zhang Y, Yang M, Ma Y, Zhang Y, Xu Q, Tu K, Zhang M. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnology 2022;20:206. [PMID: 35488343 DOI: 10.1186/s12951-022-01421-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
62 Logozzi M, Di Raimo R, Mizzoni D, Fais S. The Potentiality of Plant-Derived Nanovesicles in Human Health-A Comparison with Human Exosomes and Artificial Nanoparticles. Int J Mol Sci 2022;23:4919. [PMID: 35563310 DOI: 10.3390/ijms23094919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev and Rep. [DOI: 10.1007/s12015-022-10377-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Tan J, Taitz J, Sun SM, Langford L, Ni D, Macia L. Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Front Nutr 2022;9:878382. [DOI: 10.3389/fnut.2022.878382] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wongkaewkhiaw S, Wongrakpanich A, Krobthong S, Saengsawang W, Chairoungdua A, Boonmuen N. Induction of apoptosis in human colorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda (L.) Mansf.). PLoS One 2022;17:e0266044. [PMID: 35377896 DOI: 10.1371/journal.pone.0266044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Qin X, Wang X, Xu K, Zhang Y, Ren X, Qi B, Liang Q, Yang X, Li L, Li S. Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles. J Agric Food Chem 2022. [PMID: 35352925 DOI: 10.1021/acs.jafc.1c07730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022;14:1442. [PMID: 35406056 DOI: 10.3390/nu14071442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Wu Q, Duan WZ, Chen JB, Zhao XP, Li XJ, Liu YY, Ma QY, Xue Z, Chen JX. Extracellular Vesicles: Emerging Roles in Developing Therapeutic Approach and Delivery Tool of Chinese Herbal Medicine for the Treatment of Depressive Disorder. Front Pharmacol 2022;13:843412. [PMID: 35401216 DOI: 10.3389/fphar.2022.843412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
69 Urzì O, Gasparro R, Ganji NR, Alessandro R, Raimondo S. Plant-RNA in Extracellular Vesicles: The Secret of Cross-Kingdom Communication. Membranes 2022;12:352. [DOI: 10.3390/membranes12040352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Chen N, Sun J, Zhu Z, Cribbs AP, Xiao B. Edible plant-derived nanotherapeutics and nanocarriers: Recent progress and future directions. Expert Opinion on Drug Delivery. [DOI: 10.1080/17425247.2022.2053673] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, Zheng L. Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells. J Agric Food Chem 2022. [PMID: 35261246 DOI: 10.1021/acs.jafc.1c07306] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
72 Nguyen VQ, Um W, An JY, Joo H, Choi YC, Jung JM, Choi JS, You DG, Cho YW, Park JH. Precipitation-Mediated PEGylation of Plant-Derived Nanovesicles. Macromol Res 2022;30:85-9. [DOI: 10.1007/s13233-022-0016-x] [Reference Citation Analysis]
73 Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, Zhao G. In Vitro Effects of Tartary Buckwheat-Derived Nanovesicles on Gut Microbiota. J Agric Food Chem 2022;70:2616-29. [PMID: 35167751 DOI: 10.1021/acs.jafc.1c07658] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
74 Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, Qiao H. Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev 2022;182:114108. [PMID: 34990792 DOI: 10.1016/j.addr.2021.114108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
75 Nemidkanam V, Chaichanawongsaroj N. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate. PLoS One 2022;17:e0262884. [PMID: 35077499 DOI: 10.1371/journal.pone.0262884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Trentini M, Zanotti F, Tiengo E, Camponogara F, Degasperi M, Licastro D, Lovatti L, Zavan B. An Apple a Day Keeps the Doctor Away: Potential Role of miRNA 146 on Macrophages Treated with Exosomes Derived from Apples. Biomedicines 2022;10:415. [DOI: 10.3390/biomedicines10020415] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
77 Sriwastva MK, Deng ZB, Wang B, Teng Y, Kumar A, Sundaram K, Mu J, Lei C, Dryden GW, Xu F, Zhang L, Yan J, Zhang X, Park JW, Merchant ML, Egilmez NK, Zhang HG. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep 2022;23:e53365. [PMID: 34994476 DOI: 10.15252/embr.202153365] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
78 Thomas SC, Kim JW, Pauletti GM, Hassett DJ, Kotagiri N. Exosomes: Biological Pharmaceutical Nanovectors for Theranostics. Front Bioeng Biotechnol 2021;9:808614. [PMID: 35096795 DOI: 10.3389/fbioe.2021.808614] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
79 Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. Small 2022;18:e2105385. [PMID: 34897972 DOI: 10.1002/smll.202105385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
80 Peng C, Lu W, Fang Y. An insight into the effect of food nanoparticles on the metabolism of intestinal cells. Current Opinion in Food Science 2022;43:174-82. [DOI: 10.1016/j.cofs.2021.12.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Cho JH, Hong YD, Kim D, Park SJ, Kim JS, Kim H, Yoon EJ, Cho J. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. Appl Biol Chem 2022;65. [DOI: 10.1186/s13765-022-00676-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Kim J, Lee Y, Wang J, Kim YK, Kwon IK. Isolation and characterization of ginseng-derived exosome-like nanoparticles with sucrose cushioning followed by ultracentrifugation. SN Appl Sci 2022;4. [DOI: 10.1007/s42452-022-04943-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Ho MS, Ho MS, Librach CL. Therapeutic potential of induced pluripotent stem cell–derived extracellular vesicles. Current Topics in iPSCs Technology 2022. [DOI: 10.1016/b978-0-323-99892-5.00013-x] [Reference Citation Analysis]
84 Chen T, Ma F, Peng Y, Sun R, Xi Q, Sun J, Zhang J, Zhang Y, Li M. Plant miR167e-5p promotes 3T3-L1 adipocyte adipogenesis by targeting β-catenin. In Vitro Cell Dev Biol Anim 2022;58:471-9. [PMID: 35829897 DOI: 10.1007/s11626-022-00702-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Tastan B, Tarakcioglu E, Birinci Y, Park Y, Genc S. Role of Exosomal MicroRNAs in Cell-to-Cell Communication. Methods Mol Biol 2022;2257:269-92. [PMID: 34432284 DOI: 10.1007/978-1-0716-1170-8_14] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Bindra HS, Singh B. Nanomedicine and Healthcare Systems. Innovative Approaches for Nanobiotechnology in Healthcare Systems 2022. [DOI: 10.4018/978-1-7998-8251-0.ch001] [Reference Citation Analysis]
87 Matic S, Dia VP. Bovine milk exosomes affected proliferation of macrophages under hypoxia. Current Research in Food Science 2022;5:2108-2113. [DOI: 10.1016/j.crfs.2022.11.002] [Reference Citation Analysis]
88 Karamanidou T, Tsouknidas A. Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers. Int J Mol Sci 2021;23:191. [PMID: 35008617 DOI: 10.3390/ijms23010191] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
89 Zhao Q, Liu G, Xie M, Zou Y, Guo Z, Liu F, Dong J, Ye J, Cao Y, Sun G, Zheng L, Zhao K. An enzyme-based system for the extraction of small extracellular vesicles from plants.. [DOI: 10.1101/2021.12.22.473784] [Reference Citation Analysis]
90 Zeng L, Wang H, Shi W, Chen L, Chen T, Chen G, Wang W, Lan J, Huang Z, Zhang J, Chen J. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnology 2021;19:439. [PMID: 34930289 DOI: 10.1186/s12951-021-01195-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
91 Stanly C, Kim H, Antonucci G, Fiume I, Guescini M, Kim KP, Ciardiello MA, Giangrieco I, Mari A, Pocsfalvi G. Crosstalk Between the Immune System and Plant-Derived Nanovesicles: A Study of Allergen Transporting. Front Bioeng Biotechnol 2021;9:760730. [PMID: 34900959 DOI: 10.3389/fbioe.2021.760730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
92 Bruno SP, Paolini A, D'Oria V, Sarra A, Sennato S, Bordi F, Masotti A. Extracellular Vesicles Derived From Citrus sinensis Modulate Inflammatory Genes and Tight Junctions in a Human Model of Intestinal Epithelium. Front Nutr 2021;8:778998. [PMID: 34901124 DOI: 10.3389/fnut.2021.778998] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
93 Zhou Q, Ma K, Hu H, Xing X, Huang X, Gao H. Extracellular vesicles: Their functions in plant-pathogen interactions. Mol Plant Pathol 2021. [PMID: 34873812 DOI: 10.1111/mpp.13170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
94 Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: Emerging bioactives from edible plants to treat human diseases? Trends in Food Science & Technology 2021;118:723-734. [DOI: 10.1016/j.tifs.2021.10.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Akao Y, Kuranaga Y, Heishima K, Sugito N, Morikawa K, Ito Y, Soga T, Ito T. Plant hvu-MIR168-3p enhances expression of glucose transporter 1 (SLC2A1) in human cells by silencing genes related to mitochondrial electron transport chain complex I. J Nutr Biochem 2021;101:108922. [PMID: 34856354 DOI: 10.1016/j.jnutbio.2021.108922] [Reference Citation Analysis]
96 Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep 2021;11:22818. [PMID: 34819568 DOI: 10.1038/s41598-021-02241-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
97 Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021;8:718093. [PMID: 34778332 DOI: 10.3389/fnut.2021.718093] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
98 Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021;12:9549-62. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
99 Liu B, Li X, Yu H, Shi X, Zhou Y, Alvarez S, Naldrett MJ, Kachman SD, Ro SH, Sun X, Chung S, Jing L, Yu J. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics 2021;11:9311-30. [PMID: 34646372 DOI: 10.7150/thno.60265] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
100 Han JM, Song HY, Lim ST, Kim KI, Seo HS, Byun EB. Immunostimulatory Potential of Extracellular Vesicles Isolated from an Edible Plant, Petasites japonicus, via the Induction of Murine Dendritic Cell Maturation. Int J Mol Sci 2021;22:10634. [PMID: 34638974 DOI: 10.3390/ijms221910634] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
101 Bondhopadhyay B, Sisodiya S, Alzahrani FA, Bakhrebah MA, Chikara A, Kasherwal V, Khan A, Rani J, Dar SA, Akhter N, Tanwar P, Agrawal U, Hussain S. Exosomes: A Forthcoming Era of Breast Cancer Therapeutics. Cancers (Basel) 2021;13:4672. [PMID: 34572899 DOI: 10.3390/cancers13184672] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
102 Kim H, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y. Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers (Basel) 2021;13:4435. [PMID: 34503245 DOI: 10.3390/cancers13174435] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
103 Huang Y, Wang S, Cai Q, Jin H. Methodological guidelines for isolation and purification of plant extracellular vesicles.. [DOI: 10.1101/2021.09.01.458648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
104 Ceccarelli L, Marchetti L, Giacomelli C, Martini C. Advances in microglia cellular models: focus on extracellular vesicle production. Biochem Soc Trans 2021;49:1791-802. [PMID: 34415299 DOI: 10.1042/BST20210203] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
105 Narauskaitė D, Vydmantaitė G, Rusteikaitė J, Sampath R, Rudaitytė A, Stašytė G, Aparicio Calvente MI, Jekabsone A. Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel) 2021;14:811. [PMID: 34451909 DOI: 10.3390/ph14080811] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
106 Kim DK, Rhee WJ. Antioxidative Effects of Carrot-Derived Nanovesicles in Cardiomyoblast and Neuroblastoma Cells. Pharmaceutics 2021;13:1203. [PMID: 34452164 DOI: 10.3390/pharmaceutics13081203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
107 Logozzi M, Di Raimo R, Mizzoni D, Fais S. Nanovesicles from Organic Agriculture-Derived Fruits and Vegetables: Characterization and Functional Antioxidant Content. Int J Mol Sci 2021;22:8170. [PMID: 34360936 DOI: 10.3390/ijms22158170] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
108 Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. Tissue Eng Regen Med 2021;18:561-71. [PMID: 34313971 DOI: 10.1007/s13770-021-00367-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
109 Mammadova R, Fiume I, Bokka R, Kralj-Iglič V, Božič D, Kisovec M, Podobnik M, Zavec AB, Hočevar M, Gellén G, Schlosser G, Pocsfalvi G. Identification of Tomato Infecting Viruses That Co-Isolate with Nanovesicles Using a Combined Proteomics and Electron-Microscopic Approach. Nanomaterials (Basel) 2021;11:1922. [PMID: 34443753 DOI: 10.3390/nano11081922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
110 Özkan İ, Koçak P, Yıldırım M, Ünsal N, Yılmaz H, Telci D, Şahin F. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci Rep 2021;11:14773. [PMID: 34285262 DOI: 10.1038/s41598-021-93876-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
111 Suresh AP, Kalarikkal SP, Pullareddy B, Sundaram GM. Low pH-Based Method to Increase the Yield of Plant-Derived Nanoparticles from Fresh Ginger Rhizomes. ACS Omega 2021;6:17635-41. [PMID: 34278148 DOI: 10.1021/acsomega.1c02162] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
112 Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.05.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
113 Komori H, Fujita D, Shirasaki Y, Zhu Q, Iwamoto Y, Nakanishi T, Nakajima M, Tamai I. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-Transporting Peptide 2B1/SLCO2B1 in Caco-2 Cells. Drug Metab Dispos 2021;49:803-9. [PMID: 34162689 DOI: 10.1124/dmd.121.000380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Suharta S, Barlian A, Hidajah AC, Notobroto HB, Ana ID, Indariani S, Wungu TDK, Wijaya CH. Plant-derived exosome-like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J Food Sci 2021;86:2838-50. [PMID: 34151426 DOI: 10.1111/1750-3841.15787] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
115 Kim KW. In situ and ex situ imaging of plant extracellular vesicles as nanovectors for cross‐domain communication. J Phytopathol 2021;169:515-24. [DOI: 10.1111/jph.13022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
116 Fernandes M, Lopes I, Magalhães L, Sárria MP, Machado R, Sousa JC, Botelho C, Teixeira J, Gomes AC. Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. J Control Release 2021;336:130-43. [PMID: 34126168 DOI: 10.1016/j.jconrel.2021.06.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
117 Kameli N, Dragojlovic-Kerkache A, Savelkoul P, Stassen FR. Plant-Derived Extracellular Vesicles: Current Findings, Challenges, and Future Applications. Membranes (Basel) 2021;11:411. [PMID: 34072600 DOI: 10.3390/membranes11060411] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
118 Urzì O, Raimondo S, Alessandro R. Extracellular Vesicles from Plants: Current Knowledge and Open Questions. Int J Mol Sci 2021;22:5366. [PMID: 34065193 DOI: 10.3390/ijms22105366] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
119 Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Merchant ML, Zhang X, McClain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021;29:2424-40. [PMID: 33984520 DOI: 10.1016/j.ymthe.2021.05.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 12.5] [Reference Citation Analysis]
120 Yamasaki M, Yamasaki Y, Furusho R, Kimura H, Kamei I, Sonoda H, Ikeda M, Oshima T, Ogawa K, Nishiyama K. Onion (Allium cepa L.)-Derived Nanoparticles Inhibited LPS-Induced Nitrate Production, However, Their Intracellular Incorporation by Endocytosis Was Not Involved in This Effect on RAW264 Cells. Molecules 2021;26:2763. [PMID: 34067155 DOI: 10.3390/molecules26092763] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
121 Askenase PW. Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'. RNA Biol 2021;:1-16. [PMID: 33944671 DOI: 10.1080/15476286.2021.1885189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021;6:4321-32. [PMID: 33997509 DOI: 10.1016/j.bioactmat.2021.04.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
123 Sanwlani R, Fonseka P, Mathivanan S. Are Dietary Extracellular Vesicles Bioavailable and Functional in Consuming Organisms? Subcell Biochem 2021;97:509-21. [PMID: 33779931 DOI: 10.1007/978-3-030-67171-6_21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
124 Alfieri M, Leone A, Ambrosone A. Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021;13:498. [PMID: 33917448 DOI: 10.3390/pharmaceutics13040498] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
125 Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee SW, Uchiyama K. Uptake of MicroRNAs from Exosome-Like Nanovesicles of Edible Plant Juice by Rat Enterocytes. Int J Mol Sci 2021;22:3749. [PMID: 33916868 DOI: 10.3390/ijms22073749] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
126 Woith E, Guerriero G, Hausman JF, Renaut J, Leclercq CC, Weise C, Legay S, Weng A, Melzig MF. Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int J Mol Sci 2021;22:3719. [PMID: 33918442 DOI: 10.3390/ijms22073719] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
127 Lang C, Mission EG, Ahmad Fuaad AA, Shaalan M. Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability - A review. Journal of Cleaner Production 2021;293:126063. [DOI: 10.1016/j.jclepro.2021.126063] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
128 Del Pozo-Acebo L, López de Las Hazas MC, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. Br J Pharmacol 2021;178:2218-45. [PMID: 33644849 DOI: 10.1111/bph.15421] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
129 Arai M, Komori H, Fujita D, Tamai I. Uptake Pathway of Apple-derived Nanoparticle by Intestinal Cells to Deliver its Cargo. Pharm Res 2021;38:523-30. [PMID: 33723795 DOI: 10.1007/s11095-021-03018-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
130 Umezu T, Takanashi M, Murakami Y, Ohno SI, Kanekura K, Sudo K, Nagamine K, Takeuchi S, Ochiya T, Kuroda M. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev 2021;21:199-208. [PMID: 33850951 DOI: 10.1016/j.omtm.2021.03.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
131 Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front Nutr 2021;8:586564. [PMID: 33768107 DOI: 10.3389/fnut.2021.586564] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
132 Zhang L, He F, Gao L, Cong M, Sun J, Xu J, Wang Y, Hu Y, Asghar S, Hu L, Qiao H. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int J Nanomedicine 2021;16:1575-86. [PMID: 33664572 DOI: 10.2147/IJN.S293067] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
133 Buccheri C, Festucci F, Potestà M, Roglia V, Bernardini R, Minutolo A, Montesano C, Adriani W. Micro-Vesicles of Moringa oleifera Seeds in Heterozygous Rats for DAT Gene: Effects of Oral Intake on Behavioral Profile and Hematological Parameters. Int J Environ Res Public Health 2021;18:2322. [PMID: 33652987 DOI: 10.3390/ijerph18052322] [Reference Citation Analysis]
134 Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021;13:724. [PMID: 33668787 DOI: 10.3390/nu13030724] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
135 Sarvarian P, Samadi P, Gholipour E, Shams Asenjan K, Hojjat-Farsangi M, Motavalli R, Motavalli Khiavi F, Yousefi M. Application of Emerging Plant-Derived Nanoparticles as a Novel Approach for Nano-Drug Delivery Systems. Immunol Invest 2021;:1-21. [PMID: 33627016 DOI: 10.1080/08820139.2021.1891094] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
136 Cho EG, Choi SY, Kim H, Choi EJ, Lee EJ, Park PJ, Ko J, Kim KP, Baek HS. Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021;10:486. [PMID: 33668388 DOI: 10.3390/cells10030486] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
137 Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021;178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
138 Chen X, Liu B, Li X, An TT, Zhou Y, Li G, Wu-Smart J, Alvarez S, Naldrett MJ, Eudy J, Kubik G, Wilson RA, Kachman SD, Cui J, Yu J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles 2021;10:e12069. [PMID: 33613874 DOI: 10.1002/jev2.12069] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
139 Chen C, Sun M, Liu X, Wu W, Su L, Li Y, Liu G, Yan X. General and mild modification of food-derived extracellular vesicles for enhanced cell targeting. Nanoscale 2021;13:3061-9. [PMID: 33521806 DOI: 10.1039/d0nr06309f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
140 Morishita M, Horita M, Higuchi A, Marui M, Katsumi H, Yamamoto A. Characterizing Different Probiotic-Derived Extracellular Vesicles as a Novel Adjuvant for Immunotherapy. Mol Pharm 2021;18:1080-92. [PMID: 33554596 DOI: 10.1021/acs.molpharmaceut.0c01011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
141 Samad AFA, Kamaroddin MF, Sajad M. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Adv Nutr 2021;12:197-211. [PMID: 32862223 DOI: 10.1093/advances/nmaa095] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
142 Middleton H, Yergeau É, Monard C, Combier J, El Amrani A. Rhizospheric Plant–Microbe Interactions: miRNAs as a Key Mediator. Trends in Plant Science 2021;26:132-41. [DOI: 10.1016/j.tplants.2020.09.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
143 Shehzad A, Islam SU, Shahzad R, Khan S, Lee YS. Extracellular vesicles in cancer diagnostics and therapeutics. Pharmacol Ther 2021;223:107806. [PMID: 33465400 DOI: 10.1016/j.pharmthera.2021.107806] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
144 Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, Giampieri F, Mezzetti B, Baldini N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021;11:87. [PMID: 33445656 DOI: 10.3390/biom11010087] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 18.5] [Reference Citation Analysis]
145 Hmar EBL, Paul S, Boruah N, Sarkar P, Borah S, Sharma HK. Apprehending Ulcerative Colitis Management With Springing Up Therapeutic Approaches: Can Nanotechnology Play a Nascent Role? Curr Pathobiol Rep 2021;9:9-32. [DOI: 10.1007/s40139-020-00218-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
146 Hirschi KD. Genetically Modified Plants: Nutritious, Sustainable, yet Underrated. J Nutr 2020;150:2628-34. [PMID: 32725215 DOI: 10.1093/jn/nxaa220] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
147 Yang J, Hirschi KD, Karri V, Spinler JK. Dietary Modulation of the Gut Microbiome—Probing the Role of Small RNAs. Comprehensive Foodomics 2021. [DOI: 10.1016/b978-0-08-100596-5.22722-4] [Reference Citation Analysis]
148 Kumar P, Singh RP. Microbial Diversity and Multifunctional Microbial Biostimulants for Agricultural Sustainability. Climate Resilience and Environmental Sustainability Approaches 2021. [DOI: 10.1007/978-981-16-0902-2_9] [Reference Citation Analysis]
149 Pucci M, Raimondo S. Plant extracellular vesicles: the safe for bioactive compounds. Advances in Biomembranes and Lipid Self-Assembly 2021. [DOI: 10.1016/bs.abl.2020.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
150 Stanly C, Alfieri M, Ambrosone A, Leone A, Fiume I, Pocsfalvi G. Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line. Cells 2020;9:E2722. [PMID: 33371199 DOI: 10.3390/cells9122722] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
151 De Palma M, Ambrosone A, Leone A, Del Gaudio P, Ruocco M, Turiák L, Bokka R, Fiume I, Tucci M, Pocsfalvi G. Plant Roots Release Small Extracellular Vesicles with Antifungal Activity. Plants (Basel) 2020;9:E1777. [PMID: 33333782 DOI: 10.3390/plants9121777] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
152 Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, Sugár S, Adamo G, Csizmadia T, Pocsfalvi G. Biomanufacturing of Tomato-Derived Nanovesicles. Foods 2020;9:E1852. [PMID: 33322632 DOI: 10.3390/foods9121852] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
153 Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2021;29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Cited by in Crossref: 58] [Cited by in F6Publishing: 65] [Article Influence: 19.3] [Reference Citation Analysis]
154 Layton E, Fairhurst AM, Griffiths-Jones S, Grencis RK, Roberts IS. Regulatory RNAs: A Universal Language for Inter-Domain Communication. Int J Mol Sci 2020;21:E8919. [PMID: 33255483 DOI: 10.3390/ijms21238919] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
155 Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, D'Elia D, Tullo A, Catalano D. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction. Front Genet 2020;11:552490. [PMID: 33193626 DOI: 10.3389/fgene.2020.552490] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
156 Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096-122. [PMID: 33336066 DOI: 10.1515/med-2020-0160] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
157 Palazzolo S, Memeo L, Hadla M, Duzagac F, Steffan A, Perin T, Canzonieri V, Tuccinardi T, Caligiuri I, Rizzolio F. Cancer Extracellular Vesicles: Next-Generation Diagnostic and Drug Delivery Nanotools. Cancers (Basel) 2020;12:E3165. [PMID: 33126572 DOI: 10.3390/cancers12113165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
158 Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, de Gonzalo-Calvo D. Dietary microRNAs and cancer: A new therapeutic approach? Semin Cancer Biol 2021;73:19-29. [PMID: 33086083 DOI: 10.1016/j.semcancer.2020.10.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
159 Yu L, Deng Z, Liu L, Zhang W, Wang C. Plant-Derived Nanovesicles: A Novel Form of Nanomedicine. Front Bioeng Biotechnol 2020;8:584391. [PMID: 33154966 DOI: 10.3389/fbioe.2020.584391] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
160 Kandimalla R, Aqil F, Tyagi N, Gupta R. Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer. Am J Reprod Immunol 2021;85:e13349. [PMID: 32966664 DOI: 10.1111/aji.13349] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
161 Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine 2020;15:6917-34. [PMID: 33061359 DOI: 10.2147/IJN.S264498] [Cited by in Crossref: 200] [Cited by in F6Publishing: 227] [Article Influence: 66.7] [Reference Citation Analysis]
162 Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ 2020;8:e9567. [PMID: 32995073 DOI: 10.7717/peerj.9567] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
163 Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of Garlic-Derived Nanovesicles on Liver Cells is Triggered by Interaction With CD98. ACS Omega 2020;5:23118-28. [PMID: 32954162 DOI: 10.1021/acsomega.0c02893] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
164 Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020;15:6485-502. [PMID: 32922012 DOI: 10.2147/IJN.S238099] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
165 Liu Y, Wu S, Koo Y, Yang A, Dai Y, Khant H, Osman SR, Chowdhury M, Wei H, Li Y, Court K, Hwang E, Wen Y, Dasari SK, Nguyen M, Tang EC, Chehab EW, de Val N, Braam J, Sood AK. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine 2020;29:102271. [PMID: 32702466 DOI: 10.1016/j.nano.2020.102271] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
166 Yang C, Merlin D. Lipid-Based Drug Delivery Nanoplatforms for Colorectal Cancer Therapy. Nanomaterials (Basel) 2020;10:E1424. [PMID: 32708193 DOI: 10.3390/nano10071424] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
167 Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnology 2020;18:100. [PMID: 32690102 DOI: 10.1186/s12951-020-00656-9] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
168 Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like Nanoparticles: A New Type of Nanocarrier. Curr Med Chem 2020;27:3888-905. [PMID: 30706777 DOI: 10.2174/0929867326666190129142604] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
169 Kim K, Jung JH, Yoo HJ, Hyun JK, Park JH, Na D, Yeon JH. Anti-Metastatic Effects of Plant Sap-Derived Extracellular Vesicles in a 3D Microfluidic Cancer Metastasis Model. J Funct Biomater 2020;11:E49. [PMID: 32650517 DOI: 10.3390/jfb11030049] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
170 Kim YK, Choi Y, Nam GH, Kim IS. Functionalized exosome harboring bioactive molecules for cancer therapy. Cancer Lett 2020;489:155-62. [PMID: 32623071 DOI: 10.1016/j.canlet.2020.05.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
171 Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019;11:eaav8521. [PMID: 31092696 DOI: 10.1126/scitranslmed.aav8521] [Cited by in Crossref: 378] [Cited by in F6Publishing: 398] [Article Influence: 126.0] [Reference Citation Analysis]
172 Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N, Sanati-Nezhad A. Publication Trends in Exosomes Nanoparticles for Cancer Detection. Int J Nanomedicine 2020;15:4453-70. [PMID: 32617003 DOI: 10.2147/IJN.S247210] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
173 Campbell K. Do the microRNAs we eat affect gene expression? Nature 2020;582:S10-1. [DOI: 10.1038/d41586-020-01767-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
174 Jackson KK, Powell RR, Bruce TF, Marcus RK. Solid-phase extraction of exosomes from diverse matrices via a polyester capillary-channeled polymer (C-CP) fiber stationary phase in a spin-down tip format. Anal Bioanal Chem 2020;412:4713-24. [PMID: 32468278 DOI: 10.1007/s00216-020-02728-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
175 Matic S, D’souza DH, Wu T, Pangloli P, Dia VP. Bovine Milk Exosomes Affect Proliferation and Protect Macrophages against Cisplatin-Induced Cytotoxicity. Immunological Investigations 2020;49:711-25. [DOI: 10.1080/08820139.2020.1769647] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
176 Bordea IR, Candrea S, Alexescu GT, Bran S, Băciuț M, Băciuț G, Lucaciu O, Dinu CM, Todea DA. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev 2020;52:319-32. [PMID: 32393070 DOI: 10.1080/03602532.2020.1758713] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
177 De Robertis M, Sarra A, D'Oria V, Mura F, Bordi F, Postorino P, Fratantonio D. Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-α-Induced Change on Gene Expression in EA.hy926 Cells. Biomolecules 2020;10:E742. [PMID: 32397678 DOI: 10.3390/biom10050742] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
178 Munir J, Lee M, Ryu S. Exosomes in Food: Health Benefits and Clinical Relevance in Diseases. Adv Nutr 2020;11:687-96. [PMID: 31796948 DOI: 10.1093/advances/nmz123] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
179 Zhang X, Song H, Canup BSB, Xiao B. Orally delivered targeted nanotherapeutics for the treatment of colorectal cancer. Expert Opin Drug Deliv 2020;17:781-90. [PMID: 32237921 DOI: 10.1080/17425247.2020.1748005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
180 Kim K, Yoo HJ, Jung JH, Lee R, Hyun JK, Park JH, Na D, Yeon JH. Cytotoxic Effects of Plant Sap-Derived Extracellular Vesicles on Various Tumor Cell Types. J Funct Biomater 2020;11:E22. [PMID: 32252412 DOI: 10.3390/jfb11020022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
181 Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci Rep 2020;10:4456. [PMID: 32157137 DOI: 10.1038/s41598-020-61358-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
182 Xie MY, Chen T, Xi QY, Hou LJ, Luo JY, Zeng B, Li M, Sun JJ, Zhang YL. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage. Biochem Pharmacol 2020;175:113898. [PMID: 32145262 DOI: 10.1016/j.bcp.2020.113898] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
183 Zu M, Song H, Zhang J, Chen Q, Deng S, Canup BS, Yuan Y, Xiao B. Lycium barbarum lipid-based edible nanoparticles protect against experimental colitis. Colloids and Surfaces B: Biointerfaces 2020;187:110747. [DOI: 10.1016/j.colsurfb.2019.110747] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
184 Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: From anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie 2020;171-172:103-9. [PMID: 32109502 DOI: 10.1016/j.biochi.2020.02.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
185 Timo S, Lisa W, Patrick B, Timo WB, Christian P, Martin H, Anna M, Dagmar B, Martina C, Lukas J, Alexander G, Vannuruswamy G, Bernhard S, Tobias B, Jörn K, Aline K. Host-induced gene silencing involves Arabidopsis ESCRT-III pathway for the transfer of dsRNA-derived siRNA.. [DOI: 10.1101/2020.02.12.945154] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
186 Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, Zempleni J, Kachman SD, Natarajan SK, Yu J. Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice. Nutrients 2020;12:E477. [PMID: 32069862 DOI: 10.3390/nu12020477] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
187 Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J Adv Res 2020;23:101-11. [PMID: 32089878 DOI: 10.1016/j.jare.2020.02.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
188 Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. Mol Plant Pathol 2020;21:589-601. [PMID: 32027079 DOI: 10.1111/mpp.12911] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
189 Ledda B, Ottaggio L, Izzotti A, Sukkar SG, Miele M. Small RNAs in eucaryotes: new clues for amplifying microRNA benefits. Cell Biosci 2020;10:1. [PMID: 31911829 DOI: 10.1186/s13578-019-0370-3] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 11.3] [Reference Citation Analysis]
190 Ramos Juarez AP, Trepiccione F, Capasso G, Pocsfalvi G. The human EV membranome. Advances in Biomembranes and Lipid Self-Assembly 2020. [DOI: 10.1016/bs.abl.2020.09.002] [Reference Citation Analysis]
191 Kasa P, Chalikonda G, Raju GSR. Phytochemicals Plus Nanomaterial’s on Colorectal Cancer. Novel therapeutic approaches for gastrointestinal malignancies 2020. [DOI: 10.1007/978-981-15-5471-1_11] [Reference Citation Analysis]
192 Karaosmanoğlu O. İncir, Limon, Zeytin ve Turp Ekzozomlarının MCF-7 Hücrelerinde Sitotoksik Etkisinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 2019;22:382-387. [DOI: 10.18016/ksutarimdoga.v22i49454.589845] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
193 Lee R, Ko HJ, Kim K, Sohn Y, Min SY, Kim JA, Na D, Yeon JH. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles 2020;9:1703480. [PMID: 32002169 DOI: 10.1080/20013078.2019.1703480] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
194 Kırbaş OK, Bozkurt BT, Asutay AB, Mat B, Ozdemir B, Öztürkoğlu D, Ölmez H, İşlek Z, Şahin F, Taşlı PN. Optimized Isolation of Extracellular Vesicles From Various Organic Sources Using Aqueous Two-Phase System. Sci Rep 2019;9:19159. [PMID: 31844310 DOI: 10.1038/s41598-019-55477-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 8.5] [Reference Citation Analysis]
195 Stanly C, Moubarak M, Fiume I, Turiák L, Pocsfalvi G. Membrane Transporters in Citrus clementina Fruit Juice-Derived Nanovesicles. Int J Mol Sci 2019;20:E6205. [PMID: 31835328 DOI: 10.3390/ijms20246205] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
196 Chukhchin DG, Bolotova K, Sinelnikov I, Churilov D, Novozhilov E. Exosomes in the phloem and xylem of woody plants. Planta 2019;251:12. [PMID: 31776666 DOI: 10.1007/s00425-019-03315-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
197 Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, Lu W, Wei Q, Ye J, Cai X, Hu C, Yin X, Cao P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019;7:326. [PMID: 31775862 DOI: 10.1186/s40425-019-0817-4] [Cited by in Crossref: 80] [Cited by in F6Publishing: 85] [Article Influence: 20.0] [Reference Citation Analysis]
198 Wei QY, He KM, Chen JL, Xu YM, Lau ATY. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019;24:E4246. [PMID: 31766544 DOI: 10.3390/molecules24234246] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
199 Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019;20:E5695. [PMID: 31739393 DOI: 10.3390/ijms20225695] [Cited by in Crossref: 103] [Cited by in F6Publishing: 106] [Article Influence: 25.8] [Reference Citation Analysis]
200 Li M, Chen T, He JJ, Wu JH, Luo JY, Ye RS, Xie MY, Zhang HJ, Zeng B, Liu J, Xi QY, Jiang QY, Sun JJ, Zhang YL. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells 2019;8:E1385. [PMID: 31689969 DOI: 10.3390/cells8111385] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
201 Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Merchant ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. iScience 2019;21:308-27. [PMID: 31678913 DOI: 10.1016/j.isci.2019.10.032] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
202 Pirim D, Dogan B. In silico identification of putative roles of food-derived xeno-mirs on diet-associated cancer. Nutrition and Cancer 2020;72:481-8. [DOI: 10.1080/01635581.2019.1670854] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
203 O'Farrell HE, Yang IA. Extracellular vesicles in chronic obstructive pulmonary disease (COPD). J Thorac Dis 2019;11:S2141-54. [PMID: 31737342 DOI: 10.21037/jtd.2019.10.16] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
204 Teodori L, Petrignani I, Giuliani A, Prattichizzo F, Gurău F, Matacchione G, Olivieri F, Coppari S, Albertini MC. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development 2019;182:111127. [DOI: 10.1016/j.mad.2019.111127] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
205 Paganini C, Capasso Palmiero U, Pocsfalvi G, Touzet N, Bongiovanni A, Arosio P. Scalable Production and Isolation of Extracellular Vesicles: Available Sources and Lessons from Current Industrial Bioprocesses. Biotechnol J 2019;14:e1800528. [PMID: 31140717 DOI: 10.1002/biot.201800528] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
206 Zhang L, Chen T, Yin Y, Zhang CY, Zhang YL. Dietary microRNA-A Novel Functional Component of Food. Adv Nutr 2019;10:711-21. [PMID: 31120095 DOI: 10.1093/advances/nmy127] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
207 Li M, Chen T, Wang R, Luo JY, He JJ, Ye RS, Xie MY, Xi QY, Jiang QY, Sun JJ, Zhang YL. Plant MIR156 regulates intestinal growth in mammals by targeting the Wnt/β-catenin pathway. Am J Physiol Cell Physiol 2019;317:C434-48. [PMID: 31166713 DOI: 10.1152/ajpcell.00030.2019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
208 Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct 2019;10:529-38. [PMID: 30724295 DOI: 10.1039/c8fo02295j] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 15.3] [Reference Citation Analysis]
209 Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617-638. [PMID: 29795272 DOI: 10.1038/s41571-018-0036-9] [Cited by in Crossref: 703] [Cited by in F6Publishing: 743] [Article Influence: 175.8] [Reference Citation Analysis]
210 Chen X, Zhou Y, Yu J. Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation. Mol Pharm 2019;16:2690-9. [PMID: 31038962 DOI: 10.1021/acs.molpharmaceut.9b00246] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 12.5] [Reference Citation Analysis]
211 Santos Braga S. Ginger: Panacea or Consumer’s Hype? Applied Sciences 2019;9:1570. [DOI: 10.3390/app9081570] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
212 Akuma P, Okagu OD, Udenigwe CC. Naturally Occurring Exosome Vesicles as Potential Delivery Vehicle for Bioactive Compounds. Front Sustain Food Syst 2019;3:23. [DOI: 10.3389/fsufs.2019.00023] [Cited by in Crossref: 111] [Cited by in F6Publishing: 112] [Article Influence: 27.8] [Reference Citation Analysis]
213 Yuan C, Steer CJ, Subramanian S. Host⁻MicroRNA⁻Microbiota Interactions in Colorectal Cancer. Genes (Basel) 2019;10:E270. [PMID: 30987065 DOI: 10.3390/genes10040270] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
214 Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019;210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
215 Iravani S, Varma RS. Plant-Derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-Delivery. ACS Sustainable Chem Eng 2019;7:8055-69. [DOI: 10.1021/acssuschemeng.9b00954] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 16.8] [Reference Citation Analysis]
216 Reiner AT, Somoza V. Extracellular Vesicles as Vehicles for the Delivery of Food Bioactives. J Agric Food Chem 2019;67:2113-9. [DOI: 10.1021/acs.jafc.8b06369] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
217 Woith E, Melzig MF. Extracellular Vesicles from Fresh and Dried Plants-Simultaneous Purification and Visualization Using Gel Electrophoresis. Int J Mol Sci 2019;20:E357. [PMID: 30654488 DOI: 10.3390/ijms20020357] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
218 Wang X, Zhang M, Flores SRL, Woloshun RR, Yang C, Yin L, Xiang P, Xu X, Garrick MD, Vidyasagar S, Merlin D, Collins JF. Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol Ther 2019;27:493-506. [PMID: 30713087 DOI: 10.1016/j.ymthe.2019.01.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
219 Yu S, Zhao Z, Xu X, Li M, Li P. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chemistry 2019;272:372-8. [DOI: 10.1016/j.foodchem.2018.08.059] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
220 Bell IR. Phyto-Hormetins in a Clinical Setting. The Science of Hormesis in Health and Longevity 2019. [DOI: 10.1016/b978-0-12-814253-0.00007-3] [Reference Citation Analysis]
221 Spinler JK, Karri V, Hirschi KD. Planting the Microbiome. Trends Microbiol 2019;27:90-3. [PMID: 30600139 DOI: 10.1016/j.tim.2018.12.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
222 Raffo-Romero A, Arab T, Al-Amri IS, Le Marrec-Croq F, Van Camp C, Lemaire Q, Salzet M, Vizioli J, Sautiere PE, Lefebvre C. Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. Int J Mol Sci 2018;19:E4124. [PMID: 30572617 DOI: 10.3390/ijms19124124] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
223 Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In Vitro Wound Healing Activity of Wheat-Derived Nanovesicles. Appl Biochem Biotechnol 2019;188:381-94. [PMID: 30474796 DOI: 10.1007/s12010-018-2913-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
224 Fujita D, Arai T, Komori H, Shirasaki Y, Wakayama T, Nakanishi T, Tamai I. Apple-Derived Nanoparticles Modulate Expression of Organic-Anion-Transporting Polypeptide (OATP) 2B1 in Caco-2 Cells. Mol Pharm 2018;15:5772-80. [PMID: 30359033 DOI: 10.1021/acs.molpharmaceut.8b00921] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
225 Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, Sundaram K, Sriwastva MK, Zhang L, Hsieh M, Reiman R, Haribabu B, Yan J, Jala VR, Miller DM, Van Keuren-Jensen K, Merchant ML, McClain CJ, Park JW, Egilmez NK, Zhang HG. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe 2018;24:637-652.e8. [PMID: 30449315 DOI: 10.1016/j.chom.2018.10.001] [Cited by in Crossref: 265] [Cited by in F6Publishing: 284] [Article Influence: 53.0] [Reference Citation Analysis]
226 Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci Rep 2018;8:14644. [PMID: 30279553 DOI: 10.1038/s41598-018-32953-7] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 10.6] [Reference Citation Analysis]
227 Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018;15:68. [PMID: 30302122 DOI: 10.1186/s12986-018-0305-8] [Cited by in Crossref: 52] [Cited by in F6Publishing: 61] [Article Influence: 10.4] [Reference Citation Analysis]
228 Pinheiro A, Silva AM, Teixeira JH, Gonçalves RM, Almeida MI, Barbosa MA, Santos SG. Extracellular vesicles: intelligent delivery strategies for therapeutic applications. J Control Release 2018;289:56-69. [PMID: 30261205 DOI: 10.1016/j.jconrel.2018.09.019] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 12.2] [Reference Citation Analysis]
229 Rahimi Ghiasi M, Rahimi E, Amirkhani Z, Salehi R. Leucine-rich Repeat-containing G-protein Coupled Receptor 5 Gene Overexpression of the Rat Small Intestinal Progenitor Cells in Response to Orally Administered Grape Exosome-like Nanovesicles. Adv Biomed Res 2018;7:125. [PMID: 30211138 DOI: 10.4103/abr.abr_114_18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
230 Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, Gattabria F, Galgani A, Sessa L, Mattei M, Canini A, Muleo R, Colizzi V, Montesano C. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 2018;8:12413. [PMID: 30120339 DOI: 10.1038/s41598-018-30718-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
231 Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, Ma J, Tang Q, Jin L, Li X, Li M. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 2018;6:e5186. [PMID: 30083436 DOI: 10.7717/peerj.5186] [Cited by in Crossref: 96] [Cited by in F6Publishing: 99] [Article Influence: 19.2] [Reference Citation Analysis]
232 Pocsfalvi G, Turiák L, Ambrosone A, Del Gaudio P, Puska G, Fiume I, Silvestre T, Vékey K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J Plant Physiol 2018;229:111-21. [PMID: 30056374 DOI: 10.1016/j.jplph.2018.07.006] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
233 Wang W, Liu D, Zhang X, Chen D, Cheng Y, Shen F. Plant MicroRNAs in Cross-Kingdom Regulation of Gene Expression. Int J Mol Sci 2018;19:E2007. [PMID: 29996470 DOI: 10.3390/ijms19072007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
234 Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-Dependent Polymerase Chain Reaction and Elimination of Confounders in Sample Collection, Storage, and Analysis Strengthen Evidence That microRNAs in Bovine Milk Are Bioavailable in Humans. J Nutr 2018;148:153-9. [PMID: 29378054 DOI: 10.1093/jn/nxx024] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 12.2] [Reference Citation Analysis]
235 Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2018;24:1401-15. [PMID: 29788186 DOI: 10.1093/ibd/izy123] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 12.8] [Reference Citation Analysis]
236 Pocsfalvi G, Turiák L, Ambrosone A, del Gaudio P, Puska G, Fiume I, Silvestre T, Vékey K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicles populations.. [DOI: 10.1101/321240] [Reference Citation Analysis]
237 Wang Y, Wang Q, Wei X, Shao J, Zhao J, Zhang Z, Chen Z, Bai Y, Wang N, Wang Y, Li M, Zhai X. Global scientific trends on exosome research during 2007-2016: a bibliometric analysis. Oncotarget 2017;8:48460-70. [PMID: 28477015 DOI: 10.18632/oncotarget.17223] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
238 Soleti R, Andriantsitohaina R, Martinez MC. Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Archives of Biochemistry and Biophysics 2018;644:57-63. [DOI: 10.1016/j.abb.2018.03.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
239 Mendez R, Banerjee S. Sonication-Based Basic Protocol for Liposome Synthesis. Methods Mol Biol 2017;1609:255-60. [PMID: 28660588 DOI: 10.1007/978-1-4939-6996-8_21] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
240 Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing. J Agric Food Chem 2018;66:2749-57. [PMID: 29478310 DOI: 10.1021/acs.jafc.7b05614] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
241 Yang C, Zhang M, Merlin D. Advances in Plant-derived Edible Nanoparticle-based lipid Nano-drug Delivery Systems as Therapeutic Nanomedicines. J Mater Chem B 2018;6:1312-21. [PMID: 30034807 DOI: 10.1039/C7TB03207B] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 18.4] [Reference Citation Analysis]
242 Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. J Crohns Colitis 2018;12:217-29. [PMID: 28961808 DOI: 10.1093/ecco-jcc/jjx115] [Cited by in Crossref: 94] [Cited by in F6Publishing: 93] [Article Influence: 18.8] [Reference Citation Analysis]
243 Zhang HG, Cao P, Teng Y, Hu X, Wang Q, Yeri AS, Zhuang X, Samykutty A, Mu J, Deng ZB, Zhang L, Mobley JA, Yan J, Van Keuren-Jensen K, Miller D. Isolation, identification, and characterization of novel nanovesicles. Oncotarget 2016;7:41346-62. [PMID: 27191656 DOI: 10.18632/oncotarget.9325] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
244 Ispanixtlahuatl-meráz O, Schins RPF, Chirino YI. Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environ Sci : Nano 2018;5:228-45. [DOI: 10.1039/c7en00704c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
245 Yong SB, Chung JY, Song Y, Kim YH. Recent challenges and advances in genetically-engineered cell therapy. J Pharm Investig 2018;48:199-208. [PMID: 30680249 DOI: 10.1007/s40005-017-0381-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
246 Barteneva NS, Baiken Y, Fasler-kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2017;1868:372-93. [DOI: 10.1016/j.bbcan.2017.06.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
247 Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Gupta R. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. AAPS J 2017;19:1691-702. [PMID: 29047044 DOI: 10.1208/s12248-017-0154-9] [Cited by in Crossref: 129] [Cited by in F6Publishing: 145] [Article Influence: 21.5] [Reference Citation Analysis]
248 Shandilya S, Rani P, Onteru SK, Singh D. Small Interfering RNA in Milk Exosomes Is Resistant to Digestion and Crosses the Intestinal Barrier In Vitro. J Agric Food Chem 2017;65:9506-13. [DOI: 10.1021/acs.jafc.7b03123] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 8.2] [Reference Citation Analysis]
249 Yang J, Primo C, Elbaz-Younes I, Hirschi KD. Bioavailability of transgenic microRNAs in genetically modified plants. Genes Nutr 2017;12:17. [PMID: 29507644 DOI: 10.1186/s12263-017-0563-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
250 Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. Genes Nutr 2017;12:13. [PMID: 29308096 DOI: 10.1186/s12263-017-0561-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
251 Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine (Lond) 2017;12:1927-43. [PMID: 28665164 DOI: 10.2217/nnm-2017-0196] [Cited by in Crossref: 84] [Cited by in F6Publishing: 92] [Article Influence: 14.0] [Reference Citation Analysis]
252 Zempleni J. Milk exosomes: beyond dietary microRNAs. Genes Nutr 2017;12:12. [PMID: 28694874 DOI: 10.1186/s12263-017-0562-6] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
253 Kawamura Y, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci 2017;108:824-30. [PMID: 28256033 DOI: 10.1111/cas.13222] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
254 Zhou G, Zhou Y, Chen X. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs. Front Microbiol 2017;8:768. [PMID: 28507539 DOI: 10.3389/fmicb.2017.00768] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 5.5] [Reference Citation Analysis]
255 Farmer LM, Hirschi KD. MicroRNAs. Nutrigenomics and Proteomics in Health and Disease 2017. [DOI: 10.1002/9781119101277.ch9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
256 Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther 2017;25:1641-54. [PMID: 28274798 DOI: 10.1016/j.ymthe.2017.01.025] [Cited by in Crossref: 121] [Cited by in F6Publishing: 126] [Article Influence: 20.2] [Reference Citation Analysis]
257 Majumdar R, Rajasekaran K, Cary JW. RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations. Front Plant Sci 2017;8:200. [PMID: 28261252 DOI: 10.3389/fpls.2017.00200] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 9.2] [Reference Citation Analysis]
258 Cui J, Zhou B, Ross SA, Zempleni J. Nutrition, microRNAs, and Human Health. Adv Nutr. 2017;8:105-112. [PMID: 28096131 DOI: 10.3945/an.116.013839] [Cited by in Crossref: 100] [Cited by in F6Publishing: 106] [Article Influence: 16.7] [Reference Citation Analysis]
259 Lee S, Kwon K, Song M, Park K, Kwon O, Choi J. Exosome isolation from hemolymph of white-spotted flower chafer, Protaetia brevitarsis (Kolbe) (Coleoptera: Scarabaeidae). International Journal of Industrial Entomology 2016;33:85-91. [DOI: 10.7852/ijie.2016.33.2.85] [Reference Citation Analysis]
260 Lukasik A, Zielenkiewicz P. Plant MicroRNAs-Novel Players in Natural Medicine? Int J Mol Sci 2016;18:E9. [PMID: 28025496 DOI: 10.3390/ijms18010009] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 6.3] [Reference Citation Analysis]
261 Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016;32:65-74. [PMID: 27238186 DOI: 10.1016/j.arr.2016.05.001] [Cited by in Crossref: 128] [Cited by in F6Publishing: 130] [Article Influence: 18.3] [Reference Citation Analysis]
262 Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017;147:3-10. [PMID: 27852870 DOI: 10.3945/jn.116.238949] [Cited by in Crossref: 141] [Cited by in F6Publishing: 149] [Article Influence: 20.1] [Reference Citation Analysis]
263 Marzotto M, Bonafini C, Olioso D, Baruzzi A, Bettinetti L, Di Leva F, Galbiati E, Bellavite P. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype. PLoS One 2016;11:e0166340. [PMID: 27832158 DOI: 10.1371/journal.pone.0166340] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
264 Pérez-Bermúdez P, Blesa J, Soriano JM, Marcilla A. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. Eur J Pharm Sci 2017;98:40-50. [PMID: 27664331 DOI: 10.1016/j.ejps.2016.09.022] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 6.7] [Reference Citation Analysis]
265 Chaloner T, van Kan JA, Grant-downton RT. RNA ‘Information Warfare’ in Pathogenic and Mutualistic Interactions. Trends in Plant Science 2016;21:738-48. [DOI: 10.1016/j.tplants.2016.05.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
266 Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Mol Ther 2016;24:1783-96. [PMID: 27491931 DOI: 10.1038/mt.2016.159] [Cited by in Crossref: 121] [Cited by in F6Publishing: 130] [Article Influence: 17.3] [Reference Citation Analysis]
267 Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, Miyado K, Higashi Y, Ochi M. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med. 2016;5:1620-1630. [PMID: 27460850 DOI: 10.5966/sctm.2015-0285] [Cited by in Crossref: 249] [Cited by in F6Publishing: 266] [Article Influence: 35.6] [Reference Citation Analysis]
268 Simbari F, McCaskill J, Coakley G, Millar M, Maizels RM, Fabriás G, Casas J, Buck AH. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J Extracell Vesicles 2016;5:30741. [PMID: 27389011 DOI: 10.3402/jev.v5.30741] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 8.0] [Reference Citation Analysis]
269 Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond) 2016;11:1745-56. [PMID: 27348448 DOI: 10.2217/nnm-2016-0102] [Cited by in Crossref: 102] [Cited by in F6Publishing: 109] [Article Influence: 14.6] [Reference Citation Analysis]
270 Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016;101:321-40. [PMID: 27318094 DOI: 10.1016/j.biomaterials.2016.06.018] [Cited by in Crossref: 261] [Cited by in F6Publishing: 219] [Article Influence: 37.3] [Reference Citation Analysis]
271 Yang J, Hotz T, Broadnax L, Yarmarkovich M, Elbaz-Younes I, Hirschi KD. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. Sci Rep 2016;6:26834. [PMID: 27251858 DOI: 10.1038/srep26834] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 5.9] [Reference Citation Analysis]
272 Nagarajah S. Exosome Secretion - More Than Simple Waste Disposal? Implications for Physiology, Diagnostics and Therapeutics. J Circ Biomark 2016;5:7. [PMID: 28936255 DOI: 10.5772/62975] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
273 Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 2016;4:e1134415. [PMID: 27358751 DOI: 10.1080/21688370.2015.1134415] [Cited by in Crossref: 133] [Cited by in F6Publishing: 114] [Article Influence: 19.0] [Reference Citation Analysis]
274 Witwer KW. Hypothetical Plant-Mammal Small RNA Communication: Packaging and Stoichiometry. Non-coding RNAs and Inter-kingdom Communication 2016. [DOI: 10.1007/978-3-319-39496-1_10] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
275 Ibrahim A, Marbán E. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology. Annu Rev Physiol 2016;78:67-83. [PMID: 26667071 DOI: 10.1146/annurev-physiol-021115-104929] [Cited by in Crossref: 161] [Cited by in F6Publishing: 178] [Article Influence: 20.1] [Reference Citation Analysis]
276 Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015;4:28713. [PMID: 26610593 DOI: 10.3402/jev.v4.28713] [Cited by in Crossref: 141] [Cited by in F6Publishing: 150] [Article Influence: 17.6] [Reference Citation Analysis]
277 Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int J Environ Res Public Health 2015;12:13981-4020. [PMID: 26529003 DOI: 10.3390/ijerph121113981] [Cited by in Crossref: 123] [Cited by in F6Publishing: 128] [Article Influence: 15.4] [Reference Citation Analysis]
278 Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: a critical assessment. Protoplasma 2016;253:31-43. [DOI: 10.1007/s00709-015-0887-1] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 9.1] [Reference Citation Analysis]
279 Yang J, Farmer LM, Agyekum AA, Elbaz-Younes I, Hirschi KD. Detection of an Abundant Plant-Based Small RNA in Healthy Consumers. PLoS One 2015;10:e0137516. [PMID: 26335106 DOI: 10.1371/journal.pone.0137516] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 7.0] [Reference Citation Analysis]
280 Quesenberry PJ, Aliotta J, Camussi G, Abdel-Mageed AB, Wen S, Goldberg L, Zhang HG, Tetta C, Franklin J, Coffey RJ, Danielson K, Subramanya V, Ghiran I, Das S, Chen CC, Pusic KM, Pusic AD, Chatterjee D, Kraig RP, Balaj L, Dooner M. Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. J Extracell Vesicles 2015;4:27575. [PMID: 26320942 DOI: 10.3402/jev.v4.27575] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
281 Arntz OJ, Pieters BC, Oliveira MC, Broeren MG, Bennink MB, de Vries M, van Lent PL, Koenders MI, van den Berg WB, van der Kraan PM, van de Loo FA. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 2015;59:1701-12. [PMID: 26047123 DOI: 10.1002/mnfr.201500222] [Cited by in Crossref: 152] [Cited by in F6Publishing: 155] [Article Influence: 19.0] [Reference Citation Analysis]
282 Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res 2015;75:2520-9. [PMID: 25883092 DOI: 10.1158/0008-5472.CAN-14-3095] [Cited by in Crossref: 122] [Cited by in F6Publishing: 133] [Article Influence: 15.3] [Reference Citation Analysis]
283 Gu H, Overstreet AC, Yang Y. Exosomes Biogenesis and Potentials in Disease Diagnosis and Drug Delivery. Nano LIFE 2014;04:1441017. [DOI: 10.1142/s1793984414410177] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
284 [DOI: 10.1101/791111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Reference Citation Analysis]