BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang CS, Lin AH, Liu CT, Tsai CW, Chang IS, Chen HW, Lii CK. Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation. Mol Nutr Food Res 2013;57:1918-30. [PMID: 23836589 DOI: 10.1002/mnfr.201300063] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Xie H, Wang Y, Zhang J, Zhang J, Zhong Y, Ge Y, Cheng Z, Jiang C, Meng N. Design, synthesis and biological evaluation of marine phidianidine-inspired derivatives against oxidized ldl-induced endothelial injury by activating Nrf2 anti-oxidation pathway. Bioorganic Chemistry 2022;120:105606. [DOI: 10.1016/j.bioorg.2022.105606] [Reference Citation Analysis]
2 Guo Z, Mo Z. Keap1‐Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med 2020;14:869-83. [DOI: 10.1002/term.3053] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
3 Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong AN. In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS J 2017;20:19. [PMID: 29264822 DOI: 10.1208/s12248-017-0177-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
4 Ciccone V, Genah S, Morbidelli L. Endothelium as a Source and Target of H2S to Improve Its Trophism and Function. Antioxidants (Basel) 2021;10:486. [PMID: 33808872 DOI: 10.3390/antiox10030486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Gorini F, Del Turco S, Sabatino L, Gaggini M, Vassalle C. H2S as a Bridge Linking Inflammation, Oxidative Stress and Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Biomedicines 2021;9:1107. [PMID: 34572292 DOI: 10.3390/biomedicines9091107] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yan T, Liang C, Fan H, Zhou W, Huang L, Qi S, Wang W, Ma P. KAP1 silencing relieves OxLDL-induced vascular endothelial dysfunction by down-regulating LOX-1. Biosci Rep 2020;40:BSR20200821. [PMID: 32725144 DOI: 10.1042/BSR20200821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shree B, Kumar S, Priyanka, Sharma S, Katoch V. Functional significance of underutilized high value cruciferous vegetables- an exotic gleam in the gloomy guise of their functional importance. South African Journal of Botany 2022. [DOI: 10.1016/j.sajb.2022.02.028] [Reference Citation Analysis]
8 Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018;23:E2983. [PMID: 30445746 DOI: 10.3390/molecules23112983] [Cited by in Crossref: 69] [Cited by in F6Publishing: 57] [Article Influence: 17.3] [Reference Citation Analysis]
9 Chuang WT, Yen CC, Huang CS, Chen HW, Lii CK. Benzyl Isothiocyanate Ameliorates High-Fat Diet-Induced Hyperglycemia by Enhancing Nrf2-Dependent Antioxidant Defense-Mediated IRS-1/AKT/TBC1D1 Signaling and GLUT4 Expression in Skeletal Muscle. J Agric Food Chem 2020;68:15228-38. [PMID: 33301311 DOI: 10.1021/acs.jafc.0c06269] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Rojas J, Salazar J, Martínez MS, Palmar J, Bautista J, Chávez-Castillo M, Gómez A, Bermúdez V. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. Scientifica (Cairo) 2015;2015:851252. [PMID: 26491604 DOI: 10.1155/2015/851252] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
11 Meng N, Chen K, Wang Y, Hou J, Chu W, Xie S, Yang F, Sun C. Dihydrohomoplantagin and Homoplantaginin, Major Flavonoid Glycosides from Salvia plebeia R. Br. Inhibit oxLDL-Induced Endothelial Cell Injury and Restrict Atherosclerosis via Activating Nrf2 Anti-Oxidation Signal Pathway. Molecules 2022;27:1990. [DOI: 10.3390/molecules27061990] [Reference Citation Analysis]
12 Boyanapalli SS, Paredes-Gonzalez X, Fuentes F, Zhang C, Guo Y, Pung D, Saw CL, Kong AN. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem Res Toxicol 2014;27:2036-43. [PMID: 25387343 DOI: 10.1021/tx500234h] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 8.1] [Reference Citation Analysis]
13 Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ. The Role of Nrf2 in Cardiovascular Function and Disease. Oxid Med Cell Longev 2017;2017:9237263. [PMID: 29104732 DOI: 10.1155/2017/9237263] [Cited by in Crossref: 103] [Cited by in F6Publishing: 96] [Article Influence: 20.6] [Reference Citation Analysis]
14 Tang JS, Vissers MCM, Anderson RF, Sreebhavan S, Bozonet SM, Scheepens A, Melton LD. Bioavailable Blueberry-Derived Phenolic Acids at Physiological Concentrations Enhance Nrf2-Regulated Antioxidant Responses in Human Vascular Endothelial Cells. Mol Nutr Food Res 2018;62. [PMID: 29278300 DOI: 10.1002/mnfr.201700647] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
15 Jiang S, Yang Y, Li T, Ma Z, Hu W, Deng C, Fan C, Lv J, Sun Y, Yi W. An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opinion on Therapeutic Targets 2016;20:1413-24. [DOI: 10.1080/14728222.2016.1250887] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
16 Huang C, Lin A, Yang T, Liu K, Chen H, Lii C. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NFκB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochemical Pharmacology 2015;93:352-61. [DOI: 10.1016/j.bcp.2014.12.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
17 Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong AT. Correction to: In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS J 2018;20:27. [PMID: 29411155 DOI: 10.1208/s12248-018-0190-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxid Med Cell Longev 2015;2015:407580. [PMID: 26583056 DOI: 10.1155/2015/407580] [Cited by in Crossref: 79] [Cited by in F6Publishing: 80] [Article Influence: 11.3] [Reference Citation Analysis]
19 Cheng L, Pan GF, Zhang XD, Wang JL, Wang WD, Zhang JY, Wang H, Liang RX, Sun XB. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress. Sci Rep 2015;5:12333. [PMID: 26196108 DOI: 10.1038/srep12333] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
20 Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020;7:111. [PMID: 32984393 DOI: 10.3389/fnut.2020.00111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ooi BK, Chan KG, Goh BH, Yap WH. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2018;9:1308. [PMID: 30498447 DOI: 10.3389/fphar.2018.01308] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
22 Cebula M, Schmidt EE, Arnér ES. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015;23:823-53. [PMID: 26058897 DOI: 10.1089/ars.2015.6378] [Cited by in Crossref: 123] [Cited by in F6Publishing: 122] [Article Influence: 17.6] [Reference Citation Analysis]
23 Huang CS, Chen HW, Lin TY, Lin AH, Lii CK. Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes. J Ethnopharmacol 2018;216:18-25. [PMID: 29414119 DOI: 10.1016/j.jep.2018.01.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020;32:110-44. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
25 Zhu Y, Liu A, Zhang X, Qi L, Zhang L, Xue J, Liu Y, Yang P. The effect of benzyl isothiocyanate and its computer-aided design derivants targeting alkylglycerone phosphate synthase on the inhibition of human glioma U87MG cell line. Tumor Biol 2015;36:3499-509. [DOI: 10.1007/s13277-014-2986-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
26 Li C, Zhang WJ, Frei B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol 2016;9:104-13. [PMID: 27454768 DOI: 10.1016/j.redox.2016.06.006] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 9.2] [Reference Citation Analysis]
27 Chuang W, Liu Y, Huang C, Lo C, Yao H, Chen H, Lii C. Benzyl Isothiocyanate and Phenethyl Isothiocyanate Inhibit Adipogenesis and Hepatosteatosis in Mice with Obesity Induced by a High-Fat Diet. J Agric Food Chem 2019;67:7136-46. [DOI: 10.1021/acs.jafc.9b02668] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
28 Eisa NH, Khodir AE, El-Sherbiny M, Elsherbiny NM, Said E. Phenethyl isothiocyanate attenuates diabetic nephropathy via modulation of glycative/oxidative/inflammatory signaling in diabetic rats. Biomed Pharmacother 2021;142:111666. [PMID: 34215478 DOI: 10.1016/j.biopha.2021.111666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Yao J, Zou Z, Wang X, Ji X, Yang J. Pinoresinol Diglucoside Alleviates oxLDL-Induced Dysfunction in Human Umbilical Vein Endothelial Cells. Evid Based Complement Alternat Med 2016;2016:3124519. [PMID: 28042303 DOI: 10.1155/2016/3124519] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
30 Holloway PM, Gillespie S, Becker F, Vital SA, Nguyen V, Alexander JS, Evans PC, Gavins FNE. Sulforaphane induces neurovascular protection against a systemic inflammatory challenge via both Nrf2-dependent and independent pathways. Vascul Pharmacol 2016;85:29-38. [PMID: 27401964 DOI: 10.1016/j.vph.2016.07.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
31 Jiang X, Li Y, Wang W, Han X, Han J, Chen M, Zhang J, Wang C, Li S, Luo J, Wang X, Xu Y, Xu Y, Cheng J, Si S. Nuclear Factor Erythroid 2 Related Factor 2 Activator JC-5411 Inhibits Atherosclerosis Through Suppression of Inflammation and Regulation of Lipid Metabolism. Front Pharmacol 2020;11:532568. [PMID: 33442380 DOI: 10.3389/fphar.2020.532568] [Reference Citation Analysis]
32 Sotokawauchi A, Ishibashi Y, Matsui T, Yamagishi SI. Aqueous Extract of Glucoraphanin-Rich Broccoli Sprouts Inhibits Formation of Advanced Glycation End Products and Attenuates Inflammatory Reactions in Endothelial Cells. Evid Based Complement Alternat Med 2018;2018:9823141. [PMID: 30174716 DOI: 10.1155/2018/9823141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
33 Chen HW, Yen CC, Kuo LL, Lo CW, Huang CS, Chen CC, Lii CK. Benzyl isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells. Toxicol Appl Pharmacol 2020;393:114941. [PMID: 32126212 DOI: 10.1016/j.taap.2020.114941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR Jr, Steyn AJC. The Role of Host-Generated H2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020;10:586923. [PMID: 33330130 DOI: 10.3389/fcimb.2020.586923] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
35 Qin CZ, Zhang X, Wu LX, Wen CJ, Hu L, Lv QL, Shen DY, Zhou HH. Advances in molecular signaling mechanisms of β-phenethyl isothiocyanate antitumor effects. J Agric Food Chem 2015;63:3311-22. [PMID: 25798652 DOI: 10.1021/jf504627e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
36 Shehatou GS, Suddek GM. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits. Exp Biol Med (Maywood) 2016;241:426-36. [PMID: 26490346 DOI: 10.1177/1535370215609695] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
37 Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutrition Reviews 2021;79:1204-24. [DOI: 10.1093/nutrit/nuaa129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
38 Chen H, Huang C, Li C, Lin A, Huang Y, Wang T, Yao H, Lii C. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats. Toxicology and Applied Pharmacology 2014;280:1-9. [DOI: 10.1016/j.taap.2014.07.024] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 5.4] [Reference Citation Analysis]
39 Michl C, Vivarelli F, Weigl J, De Nicola GR, Canistro D, Paolini M, Iori R, Rascle A. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling. PLoS One 2016;11:e0157430. [PMID: 27304884 DOI: 10.1371/journal.pone.0157430] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
40 Sahu RP. Expression of the platelet-activating factor receptor enhances benzyl isothiocyanate-induced apoptosis in murine and human melanoma cells. Mol Med Rep 2015;12:394-400. [PMID: 25695262 DOI: 10.3892/mmr.2015.3371] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
41 Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biological Reviews. [DOI: 10.1111/brv.12866] [Reference Citation Analysis]
42 Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021;30:305-52. [PMID: 33613018 DOI: 10.1007/s00044-020-02687-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 2018;122:150-60. [PMID: 29427794 DOI: 10.1016/j.freeradbiomed.2018.02.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
44 Luna C, Alique M, Navalmoral E, Noci MV, Bohorquez-Magro L, Carracedo J, Ramírez R. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage. Clin Interv Aging 2016;11:225-36. [PMID: 27042026 DOI: 10.2147/CIA.S91453] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
45 Chen Z, Mohr A, Heitplatz B, Hansen U, Pascher A, Brockmann JG, Becker F. Sulforaphane Elicits Protective Effects in Intestinal Ischemia Reperfusion Injury. Int J Mol Sci 2020;21:E5189. [PMID: 32707886 DOI: 10.3390/ijms21155189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2021;34:43-63. [PMID: 35024180 DOI: 10.1016/j.jare.2021.06.023] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]