BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang J, Zhu S, Ma N, Johnston LJ, Wu C, Ma X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med Res Rev 2021;41:1061-88. [PMID: 33174230 DOI: 10.1002/med.21752] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang S, Zhao J, Xie F, He H, Johnston LJ, Dai X, Wu C, Ma X. Dietary fiber-derived short-chain fatty acids: A potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease. Obes Rev 2021;:e13316. [PMID: 34279051 DOI: 10.1111/obr.13316] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Tan Y, Wang Y, Feng H, Guo Z, Li X, Nie X, Zhao Y. Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.03.025] [Reference Citation Analysis]
3 Liu D, Saikam V, Skrada KA, Merlin D, Iyer SS. Inflammatory bowel disease biomarkers. Medicinal Research Reviews. [DOI: 10.1002/med.21893] [Reference Citation Analysis]
4 Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021;:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Reference Citation Analysis]
5 Xiao L, Liu Q, Luo M, Xiong L. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome. Front Cell Infect Microbiol 2021;11:729346. [PMID: 34631603 DOI: 10.3389/fcimb.2021.729346] [Reference Citation Analysis]
6 Song M, Sheng X, Ye G, Xu Z, Li X, Xie T, Deng H, Kang A. Selective enrichment of microbiota-derived tryptophan metabolites in mouse faeces based on molecularly imprinted solid-phase extraction for HPLC analysis. Journal of Pharmaceutical and Biomedical Analysis 2022. [DOI: 10.1016/j.jpba.2022.114641] [Reference Citation Analysis]
7 Sun Y, Ma N, Qi Z, Han M, Ma X. Coated Zinc Oxide Improves Growth Performance of Weaned Piglets via Gut Microbiota. Front Nutr 2022;9:819722. [DOI: 10.3389/fnut.2022.819722] [Reference Citation Analysis]
8 Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. Journal of Pharmaceutical Analysis 2021. [DOI: 10.1016/j.jpha.2021.10.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Luo Y, Zhou T. Connecting the dots: Targeting the microbiome in drug toxicity. Med Res Rev 2021. [PMID: 33856076 DOI: 10.1002/med.21805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang XN, Xia WR, Liu JQ, Sun FY, Zhong ZJ, Liu LF, Xin GZ. Targeting tryptophan metabolism reveals Clematichinenoside AR alleviates triptolide-induced hepatotoxicity. J Pharm Biomed Anal 2022;208:114461. [PMID: 34775190 DOI: 10.1016/j.jpba.2021.114461] [Reference Citation Analysis]
11 Wyatt M, Greathouse KL. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients 2021;13:1189. [PMID: 33916690 DOI: 10.3390/nu13041189] [Reference Citation Analysis]
12 Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022;:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Reference Citation Analysis]
13 Hou L, Wang L, Qiu Y, Xiong Y, Xiao H, Yi H, Wen X, Lin Z, Wang Z, Yang X, Jiang Z. Effects of Protein Restriction and Subsequent Realimentation on Body Composition, Gut Microbiota and Metabolite Profiles in Weaned Piglets. Animals (Basel) 2021;11:686. [PMID: 33806535 DOI: 10.3390/ani11030686] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Niu H, Zhou X, Gong P, Jiao Y, Zhang J, Wu Y, Lyu L, Liang C, Chen S, Han X, Zhang L. Effect of Lactobacillus rhamnosus MN-431 Producing Indole Derivatives on Complementary Feeding-Induced Diarrhea Rat Pups Through the Enhancement of the Intestinal Barrier Function. Mol Nutr Food Res 2021;:e2100619. [PMID: 34806832 DOI: 10.1002/mnfr.202100619] [Reference Citation Analysis]
15 Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. J Agric Food Chem 2022. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Reference Citation Analysis]
16 Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021;110:525-37. [PMID: 33884666 DOI: 10.1002/JLB.3MR0321-755R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhou M, Johnston LJ, Wu C, Ma X. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Crit Rev Food Sci Nutr 2021;:1-18. [PMID: 34698581 DOI: 10.1080/10408398.2021.1986466] [Reference Citation Analysis]
18 Sun B, Ma T, Li Y, Yang N, Li B, Zhou X, Guo S, Zhang S, Kwok LY, Sun Z, Zhang H. Bifidobacterium lactis Probio-M8 Adjuvant Treatment Confers Added Benefits to Patients with Coronary Artery Disease via Target Modulation of the Gut-Heart/-Brain Axes. mSystems 2022;:e0010022. [PMID: 35343796 DOI: 10.1128/msystems.00100-22] [Reference Citation Analysis]
19 Hao W, Hao C, Wu C, Xu Y, Jin C. Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. Chemosphere 2021;288:132556. [PMID: 34648793 DOI: 10.1016/j.chemosphere.2021.132556] [Reference Citation Analysis]