BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pudlo M, Demougeot C, Girard-thernier C. Arginase Inhibitors: A Rational Approach Over One Century: AN EXHAUSTIVE REVIEW OF ARGINASE INHIBITORS. Med Res Rev 2017;37:475-513. [DOI: 10.1002/med.21419] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Mordhorst S, Badmann T, Bösch NM, Morinaka BI, Rauch H, Piel J, Groll M, Vagstad AL. Structural and Biochemical Insights into Post-Translational Arginine-to-Ornithine Peptide Modifications by an Atypical Arginase. ACS Chem Biol 2023;18:528-36. [PMID: 36791048 DOI: 10.1021/acschembio.2c00879] [Reference Citation Analysis]
2 Gathiaka S, Palte RL, So SS, Chai X, Richard Miller J, Kuvelkar R, Wen X, Cifelli S, Kreamer A, Liaw A, McLaren DG, Fischer C. Discovery of non-boronic acid Arginase 1 inhibitors through virtual screening and biophysical methods. Bioorg Med Chem Lett 2023;84:129193. [PMID: 36822300 DOI: 10.1016/j.bmcl.2023.129193] [Reference Citation Analysis]
3 Canè S, Barouni RM, Fabbi M, Cuozzo J, Fracasso G, Adamo A, Ugel S, Trovato R, De Sanctis F, Giacca M, Lawlor R, Scarpa A, Rusev B, Lionetto G, Paiella S, Salvia R, Bassi C, Mandruzzato S, Ferrini S, Bronte V. Neutralization of NET-associated human ARG1 enhances cancer immunotherapy. Sci Transl Med 2023;15:eabq6221. [PMID: 36921034 DOI: 10.1126/scitranslmed.abq6221] [Reference Citation Analysis]
4 Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023;28:21. [PMID: 36890458 DOI: 10.1186/s11658-023-00423-2] [Reference Citation Analysis]
5 Naz Z, Rubina, Moin ST. Distinct binding pattern of nor-NOHA inhibitor to liver arginase in aqueous solution – Perspectives from molecular dynamics simulations. Journal of Molecular Liquids 2023;371:121014. [DOI: 10.1016/j.molliq.2022.121014] [Reference Citation Analysis]
6 Chang YS, Lin CY, Liu TY, Huang CM, Chung CC, Chen YC, Tsai FJ, Chang JG, Chang SJ. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study. Arthritis Res Ther 2022;24:229. [PMID: 36221101 DOI: 10.1186/s13075-022-02917-4] [Reference Citation Analysis]
7 Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Discov 2022;8:413. [PMID: 36209203 DOI: 10.1038/s41420-022-01200-4] [Reference Citation Analysis]
8 Mudedla SK, Ghosh B, Dhoke GV, Oh S, Wu S. QM/MM Simulations for the Broken-Symmetry Catalytic Reaction Mechanism of Human Arginase I. ACS Omega. [DOI: 10.1021/acsomega.2c04116] [Reference Citation Analysis]
9 Detroja TS, Samson AO. Virtual Screening for FDA-Approved Drugs That Selectively Inhibit Arginase Type 1 and 2. Molecules 2022;27:5134. [PMID: 36014374 DOI: 10.3390/molecules27165134] [Reference Citation Analysis]
10 Doman AJ, Tommasi S, Perkins MV, Mckinnon RA, Mangoni AA, Nair PC. Chemical similarities and differences among inhibitors of nitric oxide synthase, arginase and dimethylarginine dimethylaminohydrolase-1: implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway. Bioorganic & Medicinal Chemistry 2022. [DOI: 10.1016/j.bmc.2022.116970] [Reference Citation Analysis]
11 Orellana MS, Jaña GA, Figueroa M, Martínez-Oyanedel J, Medina FE, Tarifeño-Saldivia E, Gatica M, García-Robles MÁ, Carvajal N, Uribe E. New Insights into the Determinants of Specificity in Human Type I Arginase: Generation of a Mutant That Is Only Active with Agmatine as Substrate. Int J Mol Sci 2022;23:6438. [PMID: 35742891 DOI: 10.3390/ijms23126438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Neutrophil degranulation and myocardial infarction. Cell Commun Signal 2022;20:50. [PMID: 35410418 DOI: 10.1186/s12964-022-00824-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Durhan B, Yalçın E, Çavuşoğlu K, Acar A. Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract. Sci Rep 2022;12:4308. [PMID: 35279686 DOI: 10.1038/s41598-022-08421-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022;11:554. [PMID: 35159363 DOI: 10.3390/cells11030554] [Reference Citation Analysis]
15 Fiori-Duarte AT, de Oliveira Guarnieri JP, de Oliveira Borlot JRP, Lancellotti M, Rodrigues RP, Kitagawa RR, Kawano DF. In silico design and in vitro assessment of anti-Helicobacter pylori compounds as potential small-molecule arginase inhibitors. Mol Divers 2022. [PMID: 34997872 DOI: 10.1007/s11030-021-10371-8] [Reference Citation Analysis]
16 Al-rufaie AHA, Yaseen AI, Al-samarrai RRH. Evaluate the activity of arginase and some biochemical parameters in patients with atherosclerosis. International Conference of Chemistry and Petrochemical Techniques (ICCPT) 2022. [DOI: 10.1063/5.0094361] [Reference Citation Analysis]
17 Xiao YC, Yu JL, Dai QQ, Li G, Li GB. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores. J Med Chem 2021;64:17706-27. [PMID: 34875836 DOI: 10.1021/acs.jmedchem.1c01691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Zhang J, Liu K, Li J, Xie Y, Li Y, Wang X, Xie X, Jiao X, Tang B. Harnessing SeN to develop novel fluorescent probes for visualizing the variation of endogenous hypobromous acid (HOBr) during the administration of an immunotherapeutic agent. Chem Commun (Camb) 2021;57:12679-82. [PMID: 34779461 DOI: 10.1039/d1cc04832e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Li D, Zhang H, Lyons TW, Lu M, Achab A, Pu Q, Childers M, Mitcheltree MJ, Wang J, Martinot TA, McMinn SE, Sloman DL, Palani A, Beard A, Nogle L, Gathiaka S, Saurí J, Kim HY, Adpressa D, Spacciapoli P, Miller JR, Palte RL, Lesburg CA, Cumming J, Fischer C. Comprehensive Strategies to Bicyclic Prolines: Applications in the Synthesis of Potent Arginase Inhibitors. ACS Med Chem Lett 2021;12:1678-88. [PMID: 34795856 DOI: 10.1021/acsmedchemlett.1c00258] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zimmermann J, Weller J, Grub S, Kebir S, Lehmann F, Vatter H, Schuss P, Güresir E, Müller M. Arginase-1 Released into CSF After Aneurysmal Subarachnoid Hemorrhage Decreases Arginine/Ornithine Ratio: a Novel Prognostic Biomarker. Transl Stroke Res 2021. [PMID: 34599427 DOI: 10.1007/s12975-021-00944-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Lu M, Zhang H, Li D, Childers M, Pu Q, Palte RL, Gathiaka S, Lyons TW, Palani A, Fan PW, Spacciapoli P, Miller JR, Cho H, Cheng M, Chakravarthy K, O'Neil J, Eangoor P, Beard A, Kim HY, Saurí J, Gunaydin H, Sloman DL, Siliphaivanh P, Cumming J, Fischer C. Structure-Based Discovery of Proline-Derived Arginase Inhibitors with Improved Oral Bioavailability for Immuno-Oncology. ACS Med Chem Lett 2021;12:1380-8. [PMID: 34527178 DOI: 10.1021/acsmedchemlett.1c00195] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 McKay TB, Priyadarsini S, Rowsey T, Karamichos D. Arginine Supplementation Promotes Extracellular Matrix and Metabolic Changes in Keratoconus. Cells 2021;10:2076. [PMID: 34440845 DOI: 10.3390/cells10082076] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
23 Palte RL, Juan V, Gomez-Llorente Y, Bailly MA, Chakravarthy K, Chen X, Cipriano D, Fayadat-Dilman L, Gathiaka S, Greb H, Hall B, Handa M, Hsieh M, Kofman E, Lin H, Miller JR, Nguyen N, O'Neil J, Shaheen H, Sterner E, Strickland C, Sun A, Taremi S, Scapin G. Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun Biol 2021;4:927. [PMID: 34326456 DOI: 10.1038/s42003-021-02444-z] [Reference Citation Analysis]
24 Sosnowska A, Chlebowska-Tuz J, Matryba P, Pilch Z, Greig A, Wolny A, Grzywa TM, Rydzynska Z, Sokolowska O, Rygiel TP, Grzybowski M, Stanczak P, Blaszczyk R, Nowis D, Golab J. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma. Oncoimmunology 2021;10:1956143. [PMID: 34367736 DOI: 10.1080/2162402X.2021.1956143] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
25 Austin M, Burschowsky D, Chan DTY, Jenkinson L, Haynes S, Diamandakis A, Seewooruthun C, Addyman A, Fiedler S, Ryman S, Whitehouse J, Slater LH, Hadjinicolaou AV, Gileadi U, Gowans E, Shibata Y, Barnard M, Kaserer T, Sharma P, Luheshi NM, Wilkinson RW, Vaughan TJ, Holt SV, Cerundolo V, Carr MD, Groves MAT. Structural and functional characterization of C0021158, a high-affinity monoclonal antibody that inhibits Arginase 2 function via a novel non-competitive mechanism of action. MAbs 2020;12:1801230. [PMID: 32880207 DOI: 10.1080/19420862.2020.1801230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Arraki K, Totoson P, Decendit A, Zedet A, Maroilley J, Badoc A, Demougeot C, Girard C. Mammalian Arginase Inhibitory Activity of Methanolic Extracts and Isolated Compounds from Cyperus Species. Molecules 2021;26:1694. [PMID: 33803532 DOI: 10.3390/molecules26061694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Clemente GS, Antunes IF, Kurhade S, van den Berg MPM, Sijbesma JWA, van Waarde A, Buijsman RC, Willemsen-Seegers N, Gosens R, Meurs H, Dömling A, Elsinga PH. Mapping Arginase Expression with 18F-Fluorinated Late-Generation Arginase Inhibitors Derived from Quaternary α-Amino Acids. J Nucl Med 2021;62:1163-70. [PMID: 33712529 DOI: 10.2967/jnumed.120.255968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Gao K, Lunev S, van den Berg MPM, Al-Dahmani ZM, Evans S, Mertens DALJ, Meurs H, Gosens R, Groves MR. A synthetic peptide as an allosteric inhibitor of human arginase I and II. Mol Biol Rep 2021;48:1959-66. [PMID: 33590412 DOI: 10.1007/s11033-021-06176-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wei J, Chen P, Gupta P, Ott M, Zamler D, Kassab C, Bhat KP, Curran MA, de Groot JF, Heimberger AB. Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol 2020;22:180-94. [PMID: 31679017 DOI: 10.1093/neuonc/noz212] [Cited by in Crossref: 30] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
30 Zhang Y, He S, Chen W, Liu Y, Zhang X, Miao Q, Pu K. Activatable Polymeric Nanoprobe for Near-Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes. Angew Chem Int Ed Engl 2021;60:5921-7. [PMID: 33305425 DOI: 10.1002/anie.202015116] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 43.0] [Reference Citation Analysis]
31 Zhang Y, He S, Chen W, Liu Y, Zhang X, Miao Q, Pu K. Activatable Polymeric Nanoprobe for Near‐Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes. Angew Chem 2021;133:5986-92. [DOI: 10.1002/ange.202015116] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
32 Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol 2020;8:603837. [PMID: 33511116 DOI: 10.3389/fcell.2020.603837] [Cited by in Crossref: 54] [Cited by in F6Publishing: 61] [Article Influence: 27.0] [Reference Citation Analysis]
33 Blackwell JH, Kumar R, Gaunt MJ. Visible-Light-Mediated Carbonyl Alkylative Amination to All-Alkyl α-Tertiary Amino Acid Derivatives. J Am Chem Soc 2021;143:1598-609. [PMID: 33428383 DOI: 10.1021/jacs.0c12162] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
34 Hanusch B, Brinkmann F, Mayorandan S, Chobanyan-Jürgens K, Wiemers A, Jansen K, Ballmann M, Schmidt-Choudhury A, Bollenbach A, Derichs N, Tsikas D, Lücke T. Local and Systemic Alterations of the L-Arginine/Nitric Oxide Pathway in Sputum, Blood, and Urine of Pediatric Cystic Fibrosis Patients and Effects of Antibiotic Treatment. J Clin Med 2020;9:E3802. [PMID: 33255369 DOI: 10.3390/jcm9123802] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
35 Moretto J, Pudlo M, Demougeot C. Human-based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discov Today 2021;26:138-47. [PMID: 33197620 DOI: 10.1016/j.drudis.2020.11.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
36 Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020;76:1055-68. [PMID: 32829664 DOI: 10.1161/HYPERTENSIONAHA.120.15856] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
37 S Clemente G, van Waarde A, F Antunes I, Dömling A, H Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020;21:E5291. [PMID: 32722521 DOI: 10.3390/ijms21155291] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
38 Borek B, Gajda T, Golebiowski A, Blaszczyk R. Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorg Med Chem 2020;28:115658. [PMID: 32828425 DOI: 10.1016/j.bmc.2020.115658] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
39 Velázquez-libera JL, Caballero J, Tuñón I, Hernández-rodríguez EW, Ruiz-pernía JJ. On the Nature of the Enzyme–Substrate Complex and the Reaction Mechanism in Human Arginase I. A Combined Molecular Dynamics and QM/MM Study. ACS Catal 2020;10:8321-33. [DOI: 10.1021/acscatal.0c00981] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
40 Arraki K, Totoson P, Attia R, Zedet A, Pudlo M, Messaoud C, Demougeot C, Girard C. Arginase inhibitory properties of flavonoid compounds from the leaves of Mulberry (Morus alba, Moraceae). J Pharm Pharmacol 2020;72:1269-77. [PMID: 32496585 DOI: 10.1111/jphp.13297] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Lobos M, Figueroa M, Martínez-Oyanedel J, López V, García-Robles MLÁ, Tarifeño-Saldivia E, Carvajal N, Uribe E. Insights on the participation of Glu256 and Asp204 in the oligomeric structure and cooperative effects of human arginase type I. J Struct Biol 2020;211:107533. [PMID: 32450233 DOI: 10.1016/j.jsb.2020.107533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Akintunde JK, Akintola TE, Aliu FH, Fajoye MO, Adimchi SO. Naringin regulates erectile dysfunction by abolition of apoptosis and inflammation through NOS/cGMP/PKG signalling pathway on exposure to Bisphenol-A in hypertensive rat model. Reprod Toxicol 2020;95:123-36. [PMID: 32428650 DOI: 10.1016/j.reprotox.2020.05.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
43 Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol 2020;11:938. [PMID: 32499785 DOI: 10.3389/fimmu.2020.00938] [Cited by in Crossref: 120] [Cited by in F6Publishing: 135] [Article Influence: 40.0] [Reference Citation Analysis]
44 Attia R, Zedet A, Bourjot M, Skhiri E, Messaoud C, Girard C. Thin‐layer chromatography‐bioautographic method for the detection of arginase inhibitors. J Sep Sci 2020;43:2477-86. [DOI: 10.1002/jssc.201901210] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
45 Muller J, Cardey B, Zedet A, Desingle C, Grzybowski M, Pomper P, Foley S, Harakat D, Ramseyer C, Girard C, Pudlo M. Synthesis, evaluation and molecular modelling of piceatannol analogues as arginase inhibitors. RSC Med Chem 2020;11:559-68. [PMID: 33479657 DOI: 10.1039/d0md00011f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
46 Mitcheltree MJ, Li D, Achab A, Beard A, Chakravarthy K, Cheng M, Cho H, Eangoor P, Fan P, Gathiaka S, Kim HY, Lesburg CA, Lyons TW, Martinot TA, Miller JR, McMinn S, O'Neil J, Palani A, Palte RL, Saurí J, Sloman DL, Zhang H, Cumming JN, Fischer C. Discovery and Optimization of Rationally Designed Bicyclic Inhibitors of Human Arginase to Enhance Cancer Immunotherapy. ACS Med Chem Lett 2020;11:582-8. [PMID: 32292567 DOI: 10.1021/acsmedchemlett.0c00058] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
47 Blaszczyk R, Brzezinska J, Dymek B, Stanczak PS, Mazurkiewicz M, Olczak J, Nowicka J, Dzwonek K, Zagozdzon A, Golab J, Golebiowski A. Discovery and Pharmacokinetics of Sulfamides and Guanidines as Potent Human Arginase 1 Inhibitors. ACS Med Chem Lett 2020;11:433-8. [PMID: 32292546 DOI: 10.1021/acsmedchemlett.9b00508] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
48 van den Berg MPM, Kurhade SH, Maarsingh H, Erceg S, Hulsbeek IR, Boekema PH, Kistemaker LEM, van Faassen M, Kema IP, Elsinga PH, Dömling A, Meurs H, Gosens R. Pharmacological Screening Identifies SHK242 and SHK277 as Novel Arginase Inhibitors with Efficacy against Allergen-Induced Airway Narrowing In Vitro and In Vivo. J Pharmacol Exp Ther 2020;374:62-73. [PMID: 32269169 DOI: 10.1124/jpet.119.264341] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
49 He S, Li J, Lyu Y, Huang J, Pu K. Near-Infrared Fluorescent Macromolecular Reporters for Real-Time Imaging and Urinalysis of Cancer Immunotherapy. J Am Chem Soc 2020;142:7075-82. [DOI: 10.1021/jacs.0c00659] [Cited by in Crossref: 142] [Cited by in F6Publishing: 150] [Article Influence: 47.3] [Reference Citation Analysis]
50 Aso K, Nishigawa T, Nagamachi S, Takakura M, Furuse M. Orally administrated D-arginine exhibits higher enrichment in the brain and milk than L-arginine in ICR mice. J Vet Med Sci 2020;82:307-13. [PMID: 31932535 DOI: 10.1292/jvms.19-0630] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Cui D, Li J, Zhao X, Pu K, Zhang R. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation. Adv Mater 2020;32:e1906314. [PMID: 31833600 DOI: 10.1002/adma.201906314] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 26.0] [Reference Citation Analysis]
52 Uribe E, Reyes M, Martínez I, Mella K, Salas M, Tarifeño-saldivia E, López V, García-robles M, Martínez-oyanedel J, Figueroa M, Carvajal N, Schenk G. Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase - a historical perspective. Journal of Inorganic Biochemistry 2020;202:110812. [DOI: 10.1016/j.jinorgbio.2019.110812] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
53 Canè S, Bronte V. Detection and functional evaluation of arginase-1 isolated from human PMNs and murine MDSC. Methods in Enzymology 2020. [DOI: 10.1016/bs.mie.2019.07.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
54 Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019;99:311-79. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Cited by in Crossref: 185] [Cited by in F6Publishing: 199] [Article Influence: 46.3] [Reference Citation Analysis]
55 Moretto J, Girard C, Demougeot C. The role of arginase in aging: A systematic review. Experimental Gerontology 2019;116:54-73. [DOI: 10.1016/j.exger.2018.12.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
56 Mussai F, Wheat R, Sarrou E, Booth S, Stavrou V, Fultang L, Perry T, Kearns P, Cheng P, Keeshan K, Craddock C, De Santo C. Targeting the arginine metabolic brake enhances immunotherapy for leukaemia. Int J Cancer 2019;145:2201-8. [PMID: 30485425 DOI: 10.1002/ijc.32028] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
57 Rajamanickam K, Yang J, Sakharkar MK. Gallic Acid Potentiates the Antimicrobial Activity of Tulathromycin Against Two Key Bovine Respiratory Disease (BRD) Causing-Pathogens. Front Pharmacol 2018;9:1486. [PMID: 30662404 DOI: 10.3389/fphar.2018.01486] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
58 Attia R, Messaoud C, Arraki K, Zedet A, Demougeot C, Boussaïd M, Girard C. Phytochemical screening and arginase inhibitory activity of extracts from several Tunisian medicinal plants. South African Journal of Botany 2019;120:313-8. [DOI: 10.1016/j.sajb.2018.09.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
59 Tkachuk VA, Hordiyenko OV, Omelchenko IV, Medviediev VV, Arrault A. Methyl esters of 2-(N-hydroxycarbamimidoyl)benzoyl-substituted α-amino acids as promising building blocks in peptidomimetic synthesis: a comparative study. Monatsh Chem 2018;149:2293-2309. [DOI: 10.1007/s00706-018-2293-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
60 Velázquez-Libera JL, Navarro-Retamal C, Caballero J. Insights into the Structural Requirements of 2(S)-Amino-6-Boronohexanoic Acid Derivatives as Arginase I Inhibitors: 3D-QSAR, Docking, and Interaction Fingerprint Studies. Int J Mol Sci 2018;19:E2956. [PMID: 30274146 DOI: 10.3390/ijms19102956] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
61 Fluitt MB, Rizvi S, Li L, Alunan A, Lee H, Tiwari S, Ecelbarger CM. Chronic Insulin Infusion Down-Regulates Circulating and Urinary Nitric Oxide (NO) Levels Despite Molecular Changes in the Kidney Predicting Greater Endothelial NO Synthase Activity in Mice. Int J Mol Sci 2018;19:E2880. [PMID: 30249002 DOI: 10.3390/ijms19102880] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
62 Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019;119:1323-455. [PMID: 30192523 DOI: 10.1021/acs.chemrev.8b00201] [Cited by in Crossref: 116] [Cited by in F6Publishing: 121] [Article Influence: 23.2] [Reference Citation Analysis]
63 Cazzola M, Matera MG. Editorial overview: Respiratory: Pulmonary pharmacology - It is time for a breath of fresh air. Curr Opin Pharmacol 2018;40:iv-viii. [PMID: 29859765 DOI: 10.1016/j.coph.2018.05.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
64 Cloots RHE, Poynter ME, Terwindt E, Lamers WH, Köhler SE. Hypoargininemia exacerbates airway hyperresponsiveness in a mouse model of asthma. Respir Res 2018;19:98. [PMID: 29792217 DOI: 10.1186/s12931-018-0809-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
65 Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 2018;50:747-54. [PMID: 29700652 DOI: 10.1007/s00726-018-2567-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
66 Choudry M, Tang X, Santorian T, Wasnik S, Xiao J, Xing W, Lau KW, Mohan S, Baylink DJ, Qin X. Deficient arginase II expression without alteration in arginase I expression attenuated experimental autoimmune encephalomyelitis in mice. Immunology 2018;155:85-98. [PMID: 29574762 DOI: 10.1111/imm.12926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
67 Pham T, Liagre B, Girard-thernier C, Demougeot C. Research of novel anticancer agents targeting arginase inhibition. Drug Discovery Today 2018;23:871-8. [DOI: 10.1016/j.drudis.2018.01.046] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
68 Toogood PL. Small molecule immuno-oncology therapeutic agents. Bioorg Med Chem Lett 2018;28:319-29. [PMID: 29326017 DOI: 10.1016/j.bmcl.2017.12.044] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
69 Mortier J, Prévost JRC, Sydow D, Teuchert S, Omieczynski C, Bermudez M, Frédérick R, Wolber G. Arginase Structure and Inhibition: Catalytic Site Plasticity Reveals New Modulation Possibilities. Sci Rep 2017;7:13616. [PMID: 29051526 DOI: 10.1038/s41598-017-13366-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
70 Rojas M, Lemtalsi T, Toque HA, Xu Z, Fulton D, Caldwell RW, Caldwell RB. NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence. Antioxidants (Basel) 2017;6:E43. [PMID: 28617308 DOI: 10.3390/antiox6020043] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
71 Lisi L, Pizzoferrato M, Miscioscia FT, Topai A, Navarra P. Interactions between integrase inhibitors and human arginase 1. J Neurochem 2017;142:153-9. [PMID: 28397245 DOI: 10.1111/jnc.14039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]