BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev. 2009;29:903-953. [PMID: 19434693 DOI: 10.1002/med.20159] [Cited by in Crossref: 143] [Cited by in F6Publishing: 151] [Article Influence: 11.9] [Reference Citation Analysis]
Number Citing Articles
1 Hoarau-véchot J, Blot-dupin M, Pauly L, Touboul C, Rafii S, Rafii A, Pasquier J. Akt-Activated Endothelium Increases Cancer Cell Proliferation and Resistance to Treatment in Ovarian Cancer Cell Organoids. IJMS 2022;23:14173. [DOI: 10.3390/ijms232214173] [Reference Citation Analysis]
2 Feng Q, Yang W, Peng Z, Wang G. Recent advances in the synthetic thymidine phosphorylase inhibitors for cancer therapy. European Journal of Pharmacology 2022;934:175319. [DOI: 10.1016/j.ejphar.2022.175319] [Reference Citation Analysis]
3 Lv Z, Qiu X, Jin P, Li Z, Zhang Y, Lv L, Song F. MiR-371a-5p Positively Associates with Hepatocellular Carcinoma Malignancy but Sensitizes Cancer Cells to Oxaliplatin by Suppressing BECN1-Dependent Autophagy. Life 2022;12:1651. [DOI: 10.3390/life12101651] [Reference Citation Analysis]
4 Li Y, Liu X, Chang Y, Fan B, Shangguan C, Chen H, Zhang L, Zambelli F. Identification and Validation of a DNA Damage Repair-Related Signature for Diffuse Large B-Cell Lymphoma. BioMed Research International 2022;2022:1-24. [DOI: 10.1155/2022/2645090] [Reference Citation Analysis]
5 Patil AS, Ambhore NP, Suryawanshi SS, Bhandurge PJ, Urolagin DK, Kummara S. Chitosan-Graft-Poly (N-Isopropylacrylamide)Co-Polymer as a Carrier for Targeted Delivery and Enhanced Catalytic Activity of Capecitabine. Top Catal. [DOI: 10.1007/s11244-022-01705-3] [Reference Citation Analysis]
6 Lu X, Prodger A, Sim J, Evans CE. Pulmonary Thrombosis Promotes Tumorigenesis via Myeloid Hypoxia-Inducible Factors. Biomolecules 2022;12:1354. [DOI: 10.3390/biom12101354] [Reference Citation Analysis]
7 Mikhaylenko N, Wahnschaffe L, Herling M, Roeder I, Seifert M. Computational gene expression analysis reveals distinct molecular subgroups of T-cell prolymphocytic leukemia. PLoS ONE 2022;17:e0274463. [DOI: 10.1371/journal.pone.0274463] [Reference Citation Analysis]
8 Ko JC, Chen JC, Hsieh JM, Tseng PY, Chiang CS, Liu LL, Chien CC, Huang IH, Chang QZ, Mu BC, Lin YW. Heat shock protein 90 inhibitor 17-AAG down-regulates thymidine phosphorylase expression and potentiates the cytotoxic effect of tamoxifen and erlotinib in human lung squamous carcinoma cells. Biochem Pharmacol 2022;:115207. [PMID: 35961402 DOI: 10.1016/j.bcp.2022.115207] [Reference Citation Analysis]
9 Zhang Y, Geng H, Zhang J, He K. An update mini-review on the progress of azanucleoside analogues. Chem Pharm Bull (Tokyo) 2022. [PMID: 35753803 DOI: 10.1248/cpb.c22-00088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kaidi D, Szeponik L, Yrlid U, Wettergren Y, Bexe Lindskog E. Impact of thymidine phosphorylase and CD163 expression on prognosis in stage II colorectal cancer. Clin Transl Oncol 2022. [PMID: 35567733 DOI: 10.1007/s12094-022-02839-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Satpathy SS, Sahu SN, Pattanayak SK, Mohanty C. A molecular docking and dynamics study to screen phytochemicals that target mutant thymidine phosphorylase for colon cancer therapy. Journal of the Indian Chemical Society 2022. [DOI: 10.1016/j.jics.2022.100476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Warfield BM, Reigan P. Multifunctional role of thymidine phosphorylase in cancer. Trends in Cancer 2022. [DOI: 10.1016/j.trecan.2022.01.018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Grumetti L, Lombardi R, Iannelli F, Pucci B, Avallone A, Di Gennaro E, Budillon A. Epigenetic Approaches to Overcome Fluoropyrimidines Resistance in Solid Tumors. Cancers 2022;14:695. [DOI: 10.3390/cancers14030695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lee LD, Pozios I, Liu V, Nachbichler SB, Böhmer D, Kamphues C, Beyer K, Bruns CJ, Kreis ME, Seeliger H. Thymidine phosphorylase induction by ionizing radiation antagonizes 5-fluorouracil resistance in human ductal pancreatic adenocarcinoma. Radiat Environ Biophys 2022. [PMID: 35084511 DOI: 10.1007/s00411-022-00962-w] [Reference Citation Analysis]
15 Voutsadakis IA. Biomarkers of Trifluridine-Tipiracil Efficacy. J Clin Med 2021;10:5568. [PMID: 34884270 DOI: 10.3390/jcm10235568] [Reference Citation Analysis]
16 Warfield BM, Matheson CJ, McArthur DG, Backos DS, Reigan P. Evaluation of Thymidine Phosphorylase Inhibitors in Glioblastoma and Their Capacity for Temozolomide Potentiation. ACS Chem Neurosci 2021;12:3477-86. [PMID: 34472849 DOI: 10.1021/acschemneuro.1c00494] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Liang K, Abt ER, Le TM, Cho A, Dann AM, Cui J, Li L, Rashid K, Creech AL, Wei L, Ghukasyan R, Rosser EW, Wu N, Carlucci G, Czernin J, Donahue TR, Radu CG. STING-driven interferon signaling triggers metabolic alterations in pancreas cancer cells visualized by [18F]FLT PET imaging. Proc Natl Acad Sci U S A 2021;118:e2105390118. [PMID: 34480004 DOI: 10.1073/pnas.2105390118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
18 Ullah H, Liaqat A, Khan QU, Taha M, Khan F, Rahim F, Uddin I, Rehman ZU. Synthesis, in vitro thymidine phosphorylase activity and molecular docking study of thiadiazole bearing isatin analogs. Chem Pap 2022;76:213-24. [DOI: 10.1007/s11696-021-01842-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
19 Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, Yokota S, Kadoya K, Terkawi MA, Iwasaki N. Targeting thymidine phosphorylase as a potential therapy for bone loss associated with periprosthetic osteolysis. Bioeng Transl Med 2021;6:e10232. [PMID: 34589604 DOI: 10.1002/btm2.10232] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Kaspar F, Wolff DS, Neubauer P, Kurreck A, Arcus VL. pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from Geobacillus thermoglucosidasius. Biochemistry 2021;60:1573-7. [PMID: 33955225 DOI: 10.1021/acs.biochem.1c00156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Sperotto NDM, Silva RBM, Perelló MA, Borsoi AF, da Silva Dadda A, Roth CD, Freitas RDS, de Souza APD, Freitas DDN, Picada JN, de Sousa JT, Nabinger DD, Altenhofen S, Bonan CD, Rodrigues-Junior VS, Bizarro CV, Basso LA, Machado P. Targeting thymidine phosphorylase inhibition in human colorectal cancer xenografts. Biomed Pharmacother 2021;139:111672. [PMID: 33965731 DOI: 10.1016/j.biopha.2021.111672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Tong J, Feng Y, Wang T, Luo D. Investigation of Quantitative Structure Activity Relationship of Isatin-based Oxadiazole Derivatives as Thymidine Phosphorylase Inhibitors. Chinese Journal of Analytical Chemistry 2021;49:e21046-54. [DOI: 10.1016/s1872-2040(21)60095-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Savla SR, Laddha AP, Kulkarni YA. Pharmacology of apocynin: a natural acetophenone. Drug Metab Rev 2021;:1-21. [PMID: 33689526 DOI: 10.1080/03602532.2021.1895203] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
24 Khatoon H, Abdulmalek E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules 2021;26:1055. [PMID: 33670436 DOI: 10.3390/molecules26041055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
25 Kamatani N, Jinnah H, Hennekam RC, van Kuilenburg AB. Purine and Pyrimidine Metabolism. Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics 2021. [DOI: 10.1016/b978-0-12-812535-9.00006-6] [Reference Citation Analysis]
26 Ossick MV, Assalin HB, Kiehl IGA, Salustiano ACC, Rocha GZ, Ferrari KL, Linarelli MCB, Degasperi G, Reis LO. Carcinogenesis and Bacillus Calmette-Guérin (BCG) Intravesical Treatment of Non-Muscle-Invasive Bladder Cancer under Tryptophan and Thymine Supplementation. Nutr Cancer 2020;:1-8. [PMID: 33287590 DOI: 10.1080/01635581.2020.1856389] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
27 Biagioni A, Staderini F, Peri S, Versienti G, Schiavone N, Cianchi F, Papucci L, Magnelli L. 5-Fluorouracil Conversion Pathway Mutations in Gastric Cancer. Biology (Basel). 2020;9. [PMID: 32887417 DOI: 10.3390/biology9090265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Naz S, Farooq U, Ma H, Sarwar R, Riaz N. Three new acrylic acid derivatives from Achillea mellifolium as potential thymidine phosphorylase inhibitor: molecular docking and MD simulation studies. J Biomol Struct Dyn 2020;:1-12. [PMID: 32815797 DOI: 10.1080/07391102.2020.1808071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Cadeddu Dessalvi C, Deidda M, Giorgi M, Colonna P. Vascular Damage - Coronary Artery Disease. J Cardiovasc Echogr 2020;30:S11-6. [PMID: 32566461 DOI: 10.4103/jcecho.jcecho_3_19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020;130:155066. [DOI: 10.1016/j.cyto.2020.155066] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
31 Li S, Yang H, Li K, Fan G, Deng L, Xu C. Thymidine phosphorylase promotes angiogenesis and tumour growth in intrahepatic cholangiocarcinoma. Cell Biochem Funct 2020;38:743-52. [PMID: 32476180 DOI: 10.1002/cbf.3541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Shahzad SA, Sarfraz A, Yar M, Khan ZA, Naqvi SAR, Naz S, Khan NA, Farooq U, Batool R, Ali M. Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs. Bioorg Chem 2020;100:103876. [PMID: 32388426 DOI: 10.1016/j.bioorg.2020.103876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Taha M, Aldhamin EAJ, Almandil NB, Anouar EH, Uddin N, Alomari M, Rahim F, Adalat B, Ibrahim M, Nawaz F, Iqbal N, Alghanem B, Altolayyan A, Khan KM. Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorganic Chemistry 2020;98:103745. [DOI: 10.1016/j.bioorg.2020.103745] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
34 Javaid S, Saad SM, Zafar H, Malik R, Khan KM, Choudhary MI, Rahman AU. Thymidine phosphorylase and prostrate cancer cell proliferation inhibitory activities of synthetic 4-hydroxybenzohydrazides: In vitro, kinetic, and in silico studies. PLoS One 2020;15:e0227549. [PMID: 31986186 DOI: 10.1371/journal.pone.0227549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Javaid S, Shaikh M, Fatima N, Choudhary MI. Natural compounds as angiogenic enzyme thymidine phosphorylase inhibitors: In vitro biochemical inhibition, mechanistic, and in silico modeling studies. PLoS One 2019;14:e0225056. [PMID: 31743355 DOI: 10.1371/journal.pone.0225056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
36 Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2020;206:107447. [PMID: 31756363 DOI: 10.1016/j.pharmthera.2019.107447] [Cited by in Crossref: 196] [Cited by in F6Publishing: 164] [Article Influence: 65.3] [Reference Citation Analysis]
37 Dorababu A. Evolution of uracil based thymidine phosphorylase inhibitors, SAR and electronic correlation: revisit. Drug Dev Res 2019;80:893-920. [DOI: 10.1002/ddr.21592] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Majerník M, Jendželovský R, Babinčák M, Košuth J, Ševc J, Tonelli Gombalová Z, Jendželovská Z, Buríková M, Fedoročko P. Novel Insights into the Effect of Hyperforin and Photodynamic Therapy with Hypericin on Chosen Angiogenic Factors in Colorectal Micro-Tumors Created on Chorioallantoic Membrane. Int J Mol Sci 2019;20:E3004. [PMID: 31248208 DOI: 10.3390/ijms20123004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
39 Kugimiya N, Harada E, Suehiro Y, Suga A, Takemoto Y, Hamano K. Determination of thymidine phosphorylase expression level facilitates recurrence risk stratification in stage II/III colorectal cancer following adjuvant chemotherapy with oral fluoropyrimidines. Oncol Lett 2019;17:5267-74. [PMID: 31186743 DOI: 10.3892/ol.2019.10181] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
40 Shahzad SA, Yar M, Khan ZA, Shahzadi L, Naqvi SAR, Mahmood A, Ullah S, Shaikh AJ, Sherazi TA, Bale AT, Kukułowicz J, Bajda M. Identification of 1,2,4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs. Bioorganic Chemistry 2019;85:209-20. [DOI: 10.1016/j.bioorg.2019.01.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
41 Ko JC, Chen JC, Chen TY, Yen TC, Ma PF, Lin YC, Wu CH, Peng YS, Zheng HY, Lin YW. Inhibition of thymidine phosphorylase expression by Hsp90 inhibitor potentiates the cytotoxic effect of salinomycin in human non-small-cell lung cancer cells. Toxicology 2019;417:54-63. [PMID: 30796972 DOI: 10.1016/j.tox.2019.02.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Almandil NB, Taha M, Farooq RK, Alhibshi A, Ibrahim M, Anouar EH, Gollapalli M, Rahim F, Nawaz M, Shah SAA, Ahmed QU, Zakaria ZA. Synthesis of Thymidine Phosphorylase Inhibitor Based on Quinoxaline Derivatives and Their Molecular Docking Study. Molecules 2019;24:E1002. [PMID: 30871147 DOI: 10.3390/molecules24061002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
43 Mercuro G, Dessalvi CC, Deidda M, Stöbe S, Hagendorff A. Coronary Artery Disease. Cardiovascular Complications in Cancer Therapy 2019. [DOI: 10.1007/978-3-319-93402-0_8] [Reference Citation Analysis]
44 Sawdon AJ, Zhang J, Wang X, Peng CA. Enhanced Anticancer Activity of 5'-DFUR-PCL-MPEG Polymeric Prodrug Micelles Encapsulating Chemotherapeutic Drugs. Nanomaterials (Basel) 2018;8:E1041. [PMID: 30551585 DOI: 10.3390/nano8121041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
45 Sun X, Guo S. The Prognostic and Predictive Value of Dihydropyrimidine Dehydrogenase-Related Indicators in Clinical Outcomes of Chemotherapy in Colorectal Cancer Patients: a Systematic Review and Meta-Analysis. Pathol Oncol Res 2020;26:121-31. [PMID: 30519982 DOI: 10.1007/s12253-018-00563-3] [Reference Citation Analysis]
46 Liu W, Zhang J, Yao X, Jiang C, Ni P, Cheng L, Liu J, Ni S, Chen Q, Li Q, Zhou K, Wang G, Zhou F. Bevacizumab-enhanced antitumor effect of 5-fluorouracil via upregulation of thymidine phosphorylase through vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-specificity protein 1 pathway. Cancer Sci 2018;109:3294-304. [PMID: 30151975 DOI: 10.1111/cas.13779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
47 Chen D, Wu YS, Lin H, Wang Y, Li L, Zhang T. Efficacy and safety of TAS-102 in refractory metastatic colorectal cancer: a meta-analysis. Cancer Manag Res 2018;10:2915-24. [PMID: 30214286 DOI: 10.2147/CMAR.S174584] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
48 Uddin I, Taha M, Rahim F, Wadood A. Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorganic Chemistry 2018;78:324-31. [DOI: 10.1016/j.bioorg.2018.03.026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
49 Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018;10:E240. [PMID: 30041457 DOI: 10.3390/cancers10070240] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 13.8] [Reference Citation Analysis]
50 Taha M, Rashid U, Imran S, Ali M. Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase. Bioorganic & Medicinal Chemistry 2018;26:3654-63. [DOI: 10.1016/j.bmc.2018.05.046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
51 Iftikhar F, Yaqoob F, Tabassum N, Jan MS, Sadiq A, Tahir S, Batool T, Niaz B, Ansari FL, Choudhary MI, Rashid U. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg Chem 2018;80:99-111. [PMID: 29894893 DOI: 10.1016/j.bioorg.2018.05.026] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
52 Javid MT, Rahim F, Taha M, Nawaz M, Wadood A, Ali M, Mosaddik A, Shah SAA, Farooq RK. Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorg Chem 2018;79:323-33. [PMID: 29803079 DOI: 10.1016/j.bioorg.2018.05.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
53 Tabata S, Yamamoto M, Goto H, Hirayama A, Ohishi M, Kuramoto T, Mitsuhashi A, Ikeda R, Haraguchi M, Kawahara K, Shinsato Y, Minami K, Saijo A, Toyoda Y, Hanibuchi M, Nishioka Y, Sone S, Esumi H, Tomita M, Soga T, Furukawa T, Akiyama SI. Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells. Sci Rep 2018;8:6760. [PMID: 29713062 DOI: 10.1038/s41598-018-25189-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
54 Lettieri R, D'abramo M, Stella L, La Bella A, Leonelli F, Giansanti L, Venanzi M, Gatto E. Fluorescence and computational studies of thymidine phosphorylase affinity toward lipidated 5-FU derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018;195:84-94. [DOI: 10.1016/j.saa.2018.01.036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
55 Balaev VV, Prokofev II, Gabdoulkhakov AG, Betzel C, Lashkov AA. Crystal structure of pyrimidine-nucleoside phosphorylase from Bacillus subtilis in complex with imidazole and sulfate. Acta Crystallogr F Struct Biol Commun 2018;74:193-7. [PMID: 29633966 DOI: 10.1107/S2053230X18002935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
56 Furukawa T, Tabata S, Yamamoto M, Kawahara K, Shinsato Y, Minami K, Shimokawa M, Akiyama SI. Thymidine phosphorylase in cancer aggressiveness and chemoresistance. Pharmacol Res 2018;132:15-20. [PMID: 29604437 DOI: 10.1016/j.phrs.2018.03.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
57 Schelhaas S, Wachsmuth L, Hermann S, Rieder N, Heller A, Heinzmann K, Honess DJ, Smith DM, Fricke IB, Just N, Doblas S, Sinkus R, Döring C, Schäfers KP, Griffiths JR, Faber C, Schneider R, Aboagye EO, Jacobs AH. Thymidine Metabolism as a Confounding Factor for 3'-Deoxy-3'-18F-Fluorothymidine Uptake After Therapy in a Colorectal Cancer Model. J Nucl Med 2018;59:1063-9. [PMID: 29476002 DOI: 10.2967/jnumed.117.206250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ibrahim S, Li G, Hu F, Hou Z, Chen Q, Li G, Luo X, Hu J, Feng Y. PIK3R3 promotes chemotherapeutic sensitivity of colorectal cancer through PIK3R3/NF-kB/TP pathway. Cancer Biol Ther 2018;19:222-9. [PMID: 29370570 DOI: 10.1080/15384047.2017.1416936] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
59 Rusecka J, Kaliszewska M, Bartnik E, Tońska K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet 2018;59:43-57. [PMID: 29344903 DOI: 10.1007/s13353-017-0424-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
60 Huang L, Liu S, Lei Y, Wang K, Xu M, Chen Y, Liu B, Chen Y, Fu Q, Zhang P, Qin K, Cai Y, Fu S, Ge S, Yuan X. Systemic immune-inflammation index, thymidine phosphorylase and survival of localized gastric cancer patients after curative resection. Oncotarget 2016;7:44185-93. [PMID: 27283904 DOI: 10.18632/oncotarget.9923] [Cited by in Crossref: 42] [Cited by in F6Publishing: 54] [Article Influence: 10.5] [Reference Citation Analysis]
61 Liu H, Liu Z, Du J, He J, Lin P, Amini B, Starbuck MW, Novane N, Shah JJ, Davis RE, Hou J, Gagel RF, Yang J. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma. Sci Transl Med 2016;8:353ra113. [PMID: 27559096 DOI: 10.1126/scitranslmed.aad8949] [Cited by in Crossref: 35] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
62 Ricciuti B, Foglietta J, Chiari R, Sahebkar A, Banach M, Bianconi V, Pirro M. Emerging enzymatic targets controlling angiogenesis in cancer: preclinical evidence and potential clinical applications. Med Oncol 2018;35. [DOI: 10.1007/s12032-017-1064-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
63 Li W, Yue H. Thymidine phosphorylase: A potential new target for treating cardiovascular disease. Trends Cardiovasc Med 2018;28:157-71. [PMID: 29108898 DOI: 10.1016/j.tcm.2017.10.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
64 Che J, Pan L, Yang X, Liu Z, Huang L, Wen C, Lin A, Liu H. Thymidine phosphorylase expression and prognosis in colorectal cancer treated with 5-fluorouracil-based chemotherapy: A meta-analysis. Mol Clin Oncol. 2017;7:943-952. [PMID: 29285354 DOI: 10.3892/mco.2017.1436] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
65 Vincent MD. Cancer: Towards a general theory of the target: All successful cancer therapies, actual or potential, are reducible to either (or both) of two fundamental strategies. BioEssays 2017;39:1700059. [DOI: 10.1002/bies.201700059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
66 Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol 2017;90:68-80. [PMID: 28754316 DOI: 10.1016/j.biocel.2017.07.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
67 Il Yu J, Chul Park H, Hoon Lim D, Oh Park J, Suk Park Y, Tae Kim S, Ho Choi S, Wook Choi D, Woong Han I, Seok Heo J. Clinical outcomes of salvage chemoradiotherapy for locally recurrent biliary tract cancer. Tumori 2017;103:345-52. [PMID: 28708225 DOI: 10.5301/tj.5000666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
68 Hamzic S, Kummer D, Milesi S, Mueller D, Joerger M, Aebi S, Amstutz U, Largiader C. Novel Genetic Variants in Carboxylesterase 1 Predict Severe Early-Onset Capecitabine-Related Toxicity. Clin Pharmacol Ther 2017;102:796-804. [DOI: 10.1002/cpt.641] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
69 Zhang Q, Zhang Y, Hu X, Qin Y, Zhong W, Meng J, Xiao T, Zhang C, Li M, Chen S, Liu H, Liu Y, Sun T, Yang C. Thymidine phosphorylase promotes metastasis and serves as a marker of poor prognosis in hepatocellular carcinoma. Lab Invest 2017;97:903-12. [DOI: 10.1038/labinvest.2017.51] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
70 Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, Furfaro AL. HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation. Antioxidants (Basel) 2017;6:E29. [PMID: 28475131 DOI: 10.3390/antiox6020029] [Cited by in Crossref: 110] [Cited by in F6Publishing: 118] [Article Influence: 22.0] [Reference Citation Analysis]
71 Ferraboschi P, Ciceri S, Grisenti P. Synthesis of Antitumor Fluorinated Pyrimidine Nucleosides. Organic Preparations and Procedures International 2017;49:69-154. [DOI: 10.1080/00304948.2017.1290994] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
72 Heydari K, Saidijam M, Sharifi MR, dermani FK, Soleimani Asl S, Shabab N, Najafi R. The Effect of miR-200c Inhibition on Chemosensitivity (5- FluoroUracil) in Colorectal Cancer. Pathol Oncol Res 2018;24:145-51. [DOI: 10.1007/s12253-017-0222-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 5.6] [Reference Citation Analysis]
73 Madeddu C, Deidda M, Piras A, Cadeddu C, Demurtas L, Puzzoni M, Piscopo G, Scartozzi M, Mercuro G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown) 2016;17 Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection:e12-8. [PMID: 27755238 DOI: 10.2459/JCM.0000000000000376] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 10.6] [Reference Citation Analysis]
74 Javaid S, Ishtiaq M, Shaikh M, Hameed A, Choudhary MI. Thymidine esters as substrate analogue inhibitors of angiogenic enzyme thymidine phosphorylase in vitro. Bioorg Chem 2017;70:44-56. [PMID: 27955923 DOI: 10.1016/j.bioorg.2016.11.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
75 Chon J, Stover PJ, Field MS. Targeting nuclear thymidylate biosynthesis. Mol Aspects Med. 2017;53:48-56. [PMID: 27876557 DOI: 10.1016/j.mam.2016.11.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
76 Grañé-boladeras N, Pérez-torras S, Lozano JJ, Romero MR, Mazo A, Marín JJ, Pastor-anglada M. Pharmacogenomic analyzis of the responsiveness of gastrointestinal tumor cell lines to drug therapy: A transportome approach. Pharmacological Research 2016;113:364-75. [DOI: 10.1016/j.phrs.2016.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
77 Bera H, Chigurupati S. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer. European Journal of Medicinal Chemistry 2016;124:992-1003. [DOI: 10.1016/j.ejmech.2016.10.032] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
78 Balaev VV, Lashkov AA, Prokofev II, Gabdulkhakov AG, Seregina TA, Mironov AS, Betzel C, Mikhailov AM. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling. Crystallogr Rep 2016;61:830-41. [DOI: 10.1134/s1063774516050023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
79 Jiang X, Zhang Z, Zhao N, He X, Guo H. Effects of Platelet-Derived Endothelial Cell Growth Factor and Doppler Perfusion Index in Patients with Colorectal Hepatic Metastases. Visc Med 2016;32:206-10. [PMID: 27493949 DOI: 10.1159/000438916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
80 Campanelli R, Fois G, Catarsi P, Poletto V, Villani L, Erba BG, Maddaluno L, Jemos B, Salmoiraghi S, Guglielmelli P, Abbonante V, Di Buduo CA, Balduini A, Iurlo A, Barosi G, Rosti V, Massa M; AGIMM Investigators. Tie2 Expressing Monocytes in the Spleen of Patients with Primary Myelofibrosis. PLoS One 2016;11:e0156990. [PMID: 27281335 DOI: 10.1371/journal.pone.0156990] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
81 Stashkevich MA, Khomutov EV, Dumanskii YV, Matvienko AG, Zinkovich II. Effect of 5-Fluorouracil on Thymidine Phosphorylase Activity in Model Experiment. Bull Exp Biol Med 2016;160:646-8. [PMID: 27021101 DOI: 10.1007/s10517-016-3239-z] [Reference Citation Analysis]
82 Balaev VV, Lashkov AA, Gabdulkhakov AG, Dontsova MV, Seregina TA, Mironov AS, Betzel C, Mikhailov AM. Structural investigation of the thymidine phosphorylase from Salmonella typhimurium in the unliganded state and its complexes with thymidine and uridine. Acta Crystallogr F Struct Biol Commun 2016;72:224-33. [PMID: 26919527 DOI: 10.1107/S2053230X1600162X] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
83 Al-majid AM, Yousuf S, Choudhary  MI, Nahra F, Nolan  SP. Gold-NHC complexes as potent bioactive compounds. ChemistrySelect 2016;1:76-80. [DOI: 10.1002/slct.201600009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
84 Javaid S, Saad SM, Perveen S, Khan KM, Choudhary MI. 2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors. Bioorg Chem 2015;63:142-51. [PMID: 26547232 DOI: 10.1016/j.bioorg.2015.10.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
85 Elamin YY, Rafee S, Osman N, O Byrne KJ, Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? Cancer Microenviron 2016;9:33-43. [PMID: 26298314 DOI: 10.1007/s12307-015-0173-y] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 7.6] [Reference Citation Analysis]
86 Torres C, Linares A, Alejandre MJ, Palomino-Morales RJ, Caba O, Prados J, Aránega A, Delgado JR, Irigoyen A, Martínez-Galán J, Ortuño FM, Rojas I, Perales S. Prognosis Relevance of Serum Cytokines in Pancreatic Cancer. Biomed Res Int 2015;2015:518284. [PMID: 26346854 DOI: 10.1155/2015/518284] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
87 Zhao S, Li H, Nishijima K, Zhao Y, Akizawa H, Shimizu Y, Ohkura K, Tamaki N, Kuge Y. Relationship between biodistribution of a novel thymidine phosphorylase (TP) imaging probe and TP expression levels in normal mice. Ann Nucl Med 2015;29:582-7. [DOI: 10.1007/s12149-015-0981-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
88 Tedeschi AL, Eslami Z, Garoufalis E, Saleh RR, Omeroglu A, Altinel G, Ait-Tihyaty M, Jean-Claude B, Mihalcioiu C. Pilot study investigating the prognostic significance of thymidine phosphorylase expression in patients with metastatic breast cancer: a single institution retrospective analysis. Onco Targets Ther 2015;8:911-9. [PMID: 25960662 DOI: 10.2147/OTT.S71089] [Reference Citation Analysis]
89 Zhao HY, Chen GY, Huang Y, Li XL, Feng JF, Shi MQ, Cheng Y, Ma LX, Zhang YP, Gu CP, Song XQ, Zhou D, Zhang L. Erlotinib plus capecitabine as first-line treatment for older Chinese patients with advanced adenocarcinoma of the lung (C-TONG0807): an open-label, single arm, multicenter phase II study. Medicine (Baltimore) 2015;94:e249. [PMID: 25590835 DOI: 10.1097/MD.0000000000000249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
90 van Gisbergen M, Voets A, Starmans M, de Coo I, Yadak R, Hoffmann R, Boutros P, Smeets H, Dubois L, Lambin P. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutation Research/Reviews in Mutation Research 2015;764:16-30. [DOI: 10.1016/j.mrrev.2015.01.001] [Cited by in Crossref: 137] [Cited by in F6Publishing: 143] [Article Influence: 19.6] [Reference Citation Analysis]
91 Cavazzola LR, Carvalhal GF, Deves C, Renck D, Almeida R, Santos DS. Relative mRNA expression of prostate-derived E-twenty-six factor and E-twenty-six variant 4 transcription factors, and of uridine phosphorylase-1 and thymidine phosphorylase enzymes, in benign and malignant prostatic tissue. Oncol Lett 2015;9:2886-94. [PMID: 26137165 DOI: 10.3892/ol.2015.3093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
92 Wei Q, Liu H, Zhou H, Zhang D, Zhang Z, Zhou Q. Anticancer activity of a thymidine quinoxaline conjugate is modulated by cytosolic thymidine pathways. BMC Cancer 2015;15:159. [PMID: 25881156 DOI: 10.1186/s12885-015-1149-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
93 El-Naggar M, Ebbing E, Bijnsdorp I, van den Berg J, Peters GJ. Radiosensitization by thymidine phosphorylase inhibitor in thymidine phosphorylase negative and overexpressing bladder cancer cell lines. Nucleosides Nucleotides Nucleic Acids 2014;33:413-21. [PMID: 24940699 DOI: 10.1080/15257770.2014.892127] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
94 Peters GJ. Novel developments in the use of antimetabolites. Nucleosides Nucleotides Nucleic Acids 2014;33:358-74. [PMID: 24940694 DOI: 10.1080/15257770.2014.894197] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
95 Wang L, Schmidl SR, Stülke J. Mycoplasma pneumoniae thymidine phosphorylase. Nucleosides Nucleotides Nucleic Acids 2014;33:296-304. [PMID: 24940683 DOI: 10.1080/15257770.2013.853783] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
96 Focaccetti C, Bruno A, Magnani E, Bartolini D, Principi E, Dallaglio K, Bucci EO, Finzi G, Sessa F, Noonan DM, Albini A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One. 2015;10:e0115686. [PMID: 25671635 DOI: 10.1371/journal.pone.0115686] [Cited by in Crossref: 171] [Cited by in F6Publishing: 178] [Article Influence: 24.4] [Reference Citation Analysis]
97 O’toole S, Ancuta E, Langhe R, Chb M, Cahill D, Murphy M, Martin C, Mcevoy L, Spillane C, Sheils O, Petricoin E, Liotta L, O’leary J. Noninvasive Early Biomarkers in Ovarian Cancer. Noninvasive Molecular Markers in Gynecologic Cancers 2015. [DOI: 10.1201/b18015-15] [Reference Citation Analysis]
98 Hamon N, Slusarczyk M, Serpi M, Balzarini J, McGuigan C. Synthesis and biological evaluation of phosphoramidate prodrugs of two analogues of 2-deoxy-d-ribose-1-phosphate directed to the discovery of two carbasugars as new potential anti-HIV leads. Bioorg Med Chem 2015;23:829-38. [PMID: 25616343 DOI: 10.1016/j.bmc.2014.12.039] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
99 Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol 2014; 20(29): 9775-9827 [PMID: 25110414 DOI: 10.3748/wjg.v20.i29.9775] [Cited by in CrossRef: 87] [Cited by in F6Publishing: 92] [Article Influence: 10.9] [Reference Citation Analysis]
100 Rösler TW, Matusch A, Librizzi D, Arias-Carrión O, Freundlieb N, Hoeffken H, Oertel WH, Depboylu C, Höglinger GU. Diesterified derivatives of 5-iodo-2'-deoxyuridine as cerebral tumor tracers. PLoS One 2014;9:e102397. [PMID: 25028935 DOI: 10.1371/journal.pone.0102397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
101 Huang L, Chen F, Chen Y, Yang X, Xu S, Ge S, Fu S, Chao T, Yu Q, Liao X, Hu G, Zhang P, Yuan X. Thymidine phosphorylase gene variant, platelet counts and survival in gastrointestinal cancer patients treated by fluoropyrimidines. Sci Rep 2014;4:5697. [PMID: 25027354 DOI: 10.1038/srep05697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
102 Lindskog EB, Derwinger K, Gustavsson B, Falk P, Wettergren Y. Thymidine phosphorylase expression is associated with time to progression in patients with metastatic colorectal cancer. BMC Clin Pathol. 2014;14:25. [PMID: 24936150 DOI: 10.1186/1472-6890-14-25] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
103 Tertil M, Skrzypek K, Florczyk U, Weglarczyk K, Was H, Collet G, Guichard A, Gil T, Kuzdzal J, Jozkowicz A, Kieda C, Pichon C, Dulak J. Regulation and novel action of thymidine phosphorylase in non-small cell lung cancer: crosstalk with Nrf2 and HO-1. PLoS One 2014;9:e97070. [PMID: 24819505 DOI: 10.1371/journal.pone.0097070] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
104 Toyoda Y, Tabata S, Kishi J, Kuramoto T, Mitsuhashi A, Saijo A, Kawano H, Goto H, Aono Y, Hanibuchi M, Horikawa H, Nakajima T, Furukawa T, Sone S, Akiyama S, Nishioka Y. Thymidine phosphorylase regulates the expression of CXCL10 in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol 2014;66:560-8. [PMID: 24574215 DOI: 10.1002/art.38263] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
105 Bera H, Ojha PK, Tan BJ, Sun L, Dolzhenko AV, Chui W, Chiu GNC. Discovery of mixed type thymidine phosphorylase inhibitors endowed with antiangiogenic properties: Synthesis, pharmacological evaluation and molecular docking study of 2-thioxo-pyrazolo[1,5-a][1,3,5]triazin-4-ones. Part II. European Journal of Medicinal Chemistry 2014;78:294-303. [DOI: 10.1016/j.ejmech.2014.03.063] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
106 Bera H, Dolzhenko AV, Sun L, Dutta Gupta S, Chui WK. Synthesis and in vitro evaluation of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives as thymidine phosphorylase inhibitors. Chem Biol Drug Des 2013;82:351-60. [PMID: 23758794 DOI: 10.1111/cbdd.12171] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
107 Timofeev V, Abramchik Y, Zhukhlistova N, Muravieva T, Fateev I, Esipov R, Kuranova I. 3'-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study. Acta Crystallogr D Biol Crystallogr 2014;70:1155-65. [PMID: 24699659 DOI: 10.1107/S1399004714001904] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
108 Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem Rev 2014;114:4960-92. [DOI: 10.1021/cr400265z] [Cited by in Crossref: 448] [Cited by in F6Publishing: 472] [Article Influence: 56.0] [Reference Citation Analysis]
109 Atrih A, Mudaliar MA, Zakikhani P, Lamont DJ, Huang JT, Bray SE, Barton G, Fleming S, Nabi G. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. Br J Cancer 2014;110:1622-33. [PMID: 24548857 DOI: 10.1038/bjc.2014.24] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 5.9] [Reference Citation Analysis]
110 Tolaney SM, Jeong J, Guo H, Brock J, Morganstern D, Come SE, Golshan M, Bellon J, Winer EP, Krop IE. A phase II study of preoperative capecitabine in women with operable hormone receptor positive breast cancer. Cancer Med 2014;3:293-9. [PMID: 24464780 DOI: 10.1002/cam4.164] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
111 Deves C, Rostirolla DC, Martinelli LK, Bizarro CV, Santos DS, Basso LA. The kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer drug development. Mol Biosyst 2014;10:592-604. [PMID: 24407036 DOI: 10.1039/c3mb70453j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
112 Suh KS, Park SW, Castro A, Patel H, Blake P, Liang M, Goy A. Ovarian cancer biomarkers for molecular biosensors and translational medicine. Expert Review of Molecular Diagnostics 2014;10:1069-83. [DOI: 10.1586/erm.10.87] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 8.6] [Reference Citation Analysis]
113 Kucerova L, Feketeova L, Kozovska Z, Poturnajova M, Matuskova M, Nencka R, Babal P. In vivo 5FU-exposed human medullary thyroid carcinoma cells contain a chemoresistant CD133+ tumor-initiating cell subset. Thyroid 2014;24:520-32. [PMID: 24073856 DOI: 10.1089/thy.2013.0277] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
114 Deng J, Lei W, Fu JC, Zhang L, Li JH, Xiong JP. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun. 2014;443:789-795. [PMID: 24275137 DOI: 10.1016/j.bbrc.2013.11.064] [Cited by in Crossref: 86] [Cited by in F6Publishing: 85] [Article Influence: 9.6] [Reference Citation Analysis]
115 Cámara Y, González-vioque E, Scarpelli M, Torres-torronteras J, Martí R. Feeding the deoxyribonucleoside salvage pathway to rescue mitochondrial DNA. Drug Discovery Today 2013;18:950-7. [DOI: 10.1016/j.drudis.2013.06.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
116 Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, Martens W, Lambrichts I. Angiogenic properties of human dental pulp stem cells. PLoS One. 2013;8:e71104. [PMID: 23951091 DOI: 10.1371/journal.pone.0071104] [Cited by in Crossref: 145] [Cited by in F6Publishing: 148] [Article Influence: 16.1] [Reference Citation Analysis]
117 Bera H, Lee MH, Sun L, Dolzhenko AV, Chui WK. Synthesis, anti-thymidine phosphorylase activity and molecular docking of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones. Bioorg Chem 2013;50:34-40. [PMID: 23968897 DOI: 10.1016/j.bioorg.2013.07.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
118 Bera H, Tan BJ, Sun L, Dolzhenko AV, Chui WK, Chiu GN. A structure-activity relationship study of 1,2,4-triazolo[1,5-a][1,3,5]triazin-5,7-dione and its 5-thioxo analogues on anti-thymidine phosphorylase and associated anti-angiogenic activities. Eur J Med Chem 2013;67:325-34. [PMID: 23871912 DOI: 10.1016/j.ejmech.2013.06.051] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
119 Matsuo Y, Ding Q, Desaki R, Maemura K, Mataki Y, Shinchi H, Natsugoe S, Takao S. Hypoxia inducible factor-1 alpha plays a pivotal role in hepatic metastasis of pancreatic cancer: an immunohistochemical study. J Hepatobiliary Pancreat Sci 2014;21:105-12. [DOI: 10.1002/jhbp.6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
120 Ye DJ, Zhang JM. Research development of the relationship between thymidine phosphorylase expression and colorectal carcinoma. Cancer Biol Med. 2013;10:10-15. [PMID: 23691439 DOI: 10.7497/j.issn.2095-3941.2013.01.002] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
121 Bera H, Chui W, Gupta SD, Dolzhenko AV, Sun L. Synthesis, in vitro evaluation of thymidine phosphorylase inhibitory activity, and in silico study of 1,3,5-triazin-2,4-dione and its fused analogues. Med Chem Res 2013;22:6010-21. [DOI: 10.1007/s00044-013-0589-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
122 Vara DS, Campanella M, Canobbio I, Dunn WB, Pizzorno G, Hirano M, Pula G. Autocrine amplification of integrin αIIbβ3 activation and platelet adhesive responses by deoxyribose-1-phosphate. Thromb Haemost 2013;109:1108-19. [PMID: 23494007 DOI: 10.1160/TH12-10-0751] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
123 Peters GJ, Bijnsdorp IV. TAS-102: more than an antimetabolite. Lancet Oncol 2012;13:e518-9. [PMID: 23182191 DOI: 10.1016/S1470-2045(12)70426-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
124 Tertil M, Skrzypek K, Łoboda A. Angiogenic Signaling and Structural Abnormalities in Tumors. Angiogenesis and Vascularisation 2013. [DOI: 10.1007/978-3-7091-1428-5_17] [Reference Citation Analysis]
125 Kamatani N, Jinnah H, Hennekam RC, van Kuilenburg AB. Purine and Pyrimidine Metabolism. Emery and Rimoin's Principles and Practice of Medical Genetics 2013. [DOI: 10.1016/b978-0-12-383834-6.00099-9] [Reference Citation Analysis]
126 Otsuka K, Nanjo H, Soeda H, Shibata H. The effect of XELOX plus bevacizumab on rectal hepatoid adenocarcinoma. Int Canc Conf J 2013;2:22-26. [DOI: 10.1007/s13691-012-0057-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
127 Matuskova M, Baranovicova L, Kozovska Z, Durinikova E, Pastorakova A, Hunakova L, Waczulikova I, Nencka R, Kucerova L. Intrinsic properties of tumour cells have a key impact on the bystander effect mediated by genetically engineered mesenchymal stromal cells: MSC-mediated gene therapy depends on tumour cells properties. J Gene Med 2012;14:776-87. [DOI: 10.1002/jgm.2684] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
128 Mushahary D, Gautam P, Sundaram CS, Sirdeshmukh R. Expanded protein expression profile of human placenta using two-dimensional gel electrophoresis. Placenta 2013;34:193-6. [PMID: 23261269 DOI: 10.1016/j.placenta.2012.11.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
129 Lindskog EB, Wettergren Y, Odin E, Gustavsson B, Derwinger K. Thymidine Phosphorylase Gene Expression in Stage III Colorectal Cancer. Clin Med Insights Oncol 2012;6:347-53. [PMID: 23115484 DOI: 10.4137/CMO.S10226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
130 Bijnsdorp IV, Peters GJ. Deoxyribose protects against rapamycin-induced cytotoxicity in colorectal cancer cells in vitro. Nucleosides Nucleotides Nucleic Acids 2011;30:1197-202. [PMID: 22132975 DOI: 10.1080/15257770.2011.602657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
131 Vande Voorde J, Quintiliani M, McGuigan C, Liekens S, Balzarini J. Inhibition of pyrimidine and purine nucleoside phosphorylases by a 3,5-dichlorobenzoyl-substituted 2-deoxy-D-ribose-1-phosphate derivative. Biochem Pharmacol 2012;83:1358-63. [PMID: 22366108 DOI: 10.1016/j.bcp.2012.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
132 Jensen NF, Smith DH, Nygård SB, Rømer MU, Nielsen KV, Brünner N. Predictive biomarkers with potential of converting conventional chemotherapy to targeted therapy in patients with metastatic colorectal cancer. Scand J Gastroenterol 2012;47:340-55. [PMID: 22181013 DOI: 10.3109/00365521.2012.640835] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
133 Weng S, Tsai M, Chiu Y, Kuo Y, Chen H, Lin Y. Enhancement of Mitomycin C-Induced Cytotoxicity by Curcumin Results from Down-Regulation of MKK1/2-ERK1/2-Mediated Thymidine Phosphorylase Expression: ROLE OF TP IN CURCUMIN- AND MMC-INDUCED CYTOTOXICITY. Basic & Clinical Pharmacology & Toxicology 2012;110:298-306. [DOI: 10.1111/j.1742-7843.2011.00806.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
134 Vande Voorde J, Liekens S, Mcguigan C, Murziani PG, Slusarczyk M, Balzarini J. The cytostatic activity of NUC-3073, a phosphoramidate prodrug of 5-fluoro-2′-deoxyuridine, is independent of activation by thymidine kinase and insensitive to degradation by phosphorolytic enzymes. Biochemical Pharmacology 2011;82:441-52. [DOI: 10.1016/j.bcp.2011.05.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
135 Vrancken K, Vervaeke P, Balzarini J, Liekens S. Viruses as key regulators of angiogenesis. Rev Med Virol 2011;21:181-200. [PMID: 21538666 DOI: 10.1002/rmv.688] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
136 Naganuma Y, Choijamts B, Shirota K, Nakajima K, Ogata S, Miyamoto S, Kawarabayashi T, Emoto M. Metronomic doxifluridine chemotherapy combined with the anti-angiogenic agent TNP-470 inhibits the growth of human uterine carcinosarcoma xenografts. Cancer Science 2011;102:1545-52. [DOI: 10.1111/j.1349-7006.2011.01998.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
137 Rajabi M, Mansell D, Freeman S, Bryce RA. Structure–activity relationship of 2,4,5-trioxoimidazolidines as inhibitors of thymidine phosphorylase. European Journal of Medicinal Chemistry 2011;46:1165-71. [DOI: 10.1016/j.ejmech.2011.01.035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
138 Bijnsdorp IV, Capriotti F, Kruyt FA, Losekoot N, Fukushima M, Griffioen AW, Thijssen VL, Peters GJ. Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors. Br J Cancer 2011;104:1185-92. [PMID: 21386840 DOI: 10.1038/bjc.2011.74] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 4.9] [Reference Citation Analysis]
139 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11:123-134. [PMID: 21258396 DOI: 10.1038/nrc3004] [Cited by in Crossref: 1032] [Cited by in F6Publishing: 1099] [Article Influence: 93.8] [Reference Citation Analysis]
140 Kaufmann M, Maass N, Costa S, Schneeweiß A, Loibl S, Sütterlin M, Schrader I, Gerber B, Bauer W, Wiest W, Tomé O, Distelrath A, Hagen V, Kleine-tebbe A, Ruckhaeberle E, Mehta K, von Minckwitz G. First-line therapy with moderate dose capecitabine in metastatic breast cancer is safe and active: Results of the MONICA trial. European Journal of Cancer 2010;46:3184-91. [DOI: 10.1016/j.ejca.2010.07.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
141 Aki F, Bando Y, Takahashi T, Uehara H, Numoto S, Ito S, Sasa M, Izumi K. A retrospective study on TS mRNA expression and prediction of the effects of adjuvant oral 5-fluorouracil in breast cancer. Oncol Lett 2010;1:981-7. [PMID: 22870098 DOI: 10.3892/ol.2010.186] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
142 Bijnsdorp IV, Vrijland K, Vroling L, Fukushima M, Peters GJ. Increased migration by stimulation of thymidine phosphorylase in endothelial cells of different origin. Nucleosides Nucleotides Nucleic Acids 2010;29:482-7. [PMID: 20544542 DOI: 10.1080/15257771003730201] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
143 Liu H, Yang Y, Xiao J, Lv Y, Liu Y, Yang H, Zhao L. COX-2-Mediated Regulation of VEGF-C in Association With Lymphangiogenesis and Lymph Node Metastasis in Lung Cancer. Anat Rec 2010;293:1838-46. [DOI: 10.1002/ar.21240] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
144 Lee S, Park YH, Kim KH, Cho EY, Ahn YC, Kim K, Shim YM, Ahn JS, Park K, Im YH. Thymidine synthase, thymidine phosphorylase, and excision repair cross-complementation group 1 expression as predictive markers of capecitabine plus cisplatin chemotherapy as first-line treatment for patients with advanced oesophageal squamous cell carcinoma. Br J Cancer. 2010;103:845-851. [PMID: 20700125 DOI: 10.1038/sj.bjc.6605831] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
145 Bijnsdorp IV, Azijli K, Jansen EE, Wamelink MM, Jakobs C, Struys EA, Fukushima M, Kruyt FA, Peters GJ. Accumulation of thymidine-derived sugars in thymidine phosphorylase overexpressing cells. Biochem Pharmacol 2010;80:786-92. [PMID: 20488166 DOI: 10.1016/j.bcp.2010.05.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
146 Kočalka P, Rejman D, Vaněk V, Rinnová M, Tomečková I, Králíková Š, Petrová M, Páv O, Pohl R, Buděšínský M, Liboska R, Točík Z, Panova N, Votruba I, Rosenberg I. Structural diversity of nucleoside phosphonic acids as a key factor in the discovery of potent inhibitors of rat T-cell lymphoma thymidine phosphorylase. Bioorganic & Medicinal Chemistry Letters 2010;20:862-5. [DOI: 10.1016/j.bmcl.2009.12.081] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
147 Bronckaers A, Gago F, Balzarini J, Liekens S. ChemInform Abstract: The Dual Role of Thymidine Phosphorylase in Cancer Development and Chemotherapy. ChemInform 2010;41:no-no. [DOI: 10.1002/chin.201001264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
148 Xiao YS, Zhou J, Fan J, Sun QM, Zhao Y, Xue Q, Shen ZZ, Tang ZY. Effects of interferon-alpha on thymidine phosphorylase expression and apoptosis in human hepatocellular carcinoma SMMC-7721 cells. Shijie Huaren Xiaohua Zazhi 2009; 17(35): 3630-3634 [DOI: 10.11569/wcjd.v17.i35.3630] [Reference Citation Analysis]
149 Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, Yokota S, Kadoya K, Terkawi MA, Iwasaki N. Identification of Thymidine Phosphorylase as a Potential Therapeutic Target for Bone Loss Associated Periprosthetic Osteolysis. SSRN Journal. [DOI: 10.2139/ssrn.3804752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]