BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harder B, Tian W, La Clair JJ, Tan AC, Ooi A, Chapman E, Zhang DD. Brusatol overcomes chemoresistance through inhibition of protein translation. Mol Carcinog 2017;56:1493-500. [PMID: 28019675 DOI: 10.1002/mc.22609] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 He T, Zhou F, Su A, Zhang Y, Xing Z, Mi L, Li Z, Wu W. Brusatol: A potential sensitizing agent for cancer therapy from Brucea javanica. Biomed Pharmacother 2023;158:114134. [PMID: 36525821 DOI: 10.1016/j.biopha.2022.114134] [Reference Citation Analysis]
2 Paiboonrungruang C, Xiong Z, Lamson D, Li Y, Bowman B, Chembo J, Huang C, Li J, Livingston EW, Frank JE, Chen V, Li Y, Weissman B, Yuan H, Williams KP, Major MB, Chen X. Small Molecule Screen Identifies Pyrimethamine as an Inhibitor of NRF2-driven Esophageal Hyperplasia.. [DOI: 10.1101/2022.12.05.519147] [Reference Citation Analysis]
3 Srivastava R, Fernández-Ginés R, Encinar JA, Cuadrado A, Wells G. The current status and future prospects for therapeutic targeting of KEAP1-NRF2 and β-TrCP-NRF2 interactions in cancer chemoresistance. Free Radic Biol Med 2022:S0891-5849(22)00605-0. [PMID: 36181972 DOI: 10.1016/j.freeradbiomed.2022.09.023] [Reference Citation Analysis]
4 Jiménez-villegas J, Kirby J, Mata A, Cadenas S, Turner MR, Malaspina A, Shaw PJ, Cuadrado A, Rojo AI. Dipeptide Repeat Pathology in C9orf72-ALS Is Associated with Redox, Mitochondrial and NRF2 Pathway Imbalance. Antioxidants 2022;11:1897. [DOI: 10.3390/antiox11101897] [Reference Citation Analysis]
5 Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022:S0891-5849(22)00497-X. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Reference Citation Analysis]
6 Guo S, Huang W, Tian X. Brusatol modulates diverse cancer hallmarks and signaling pathways as a potential cancer therapeutic. Acta Materia Medica 2022;1. [DOI: 10.15212/amm-2022-0014] [Reference Citation Analysis]
7 Xing S, Nong F, Wang Y, Huang D, Qin J, Chen YF, He DH, Wu PE, Huang H, Zhan R, Xu H, Liu YQ. Brusatol has therapeutic efficacy in non-small cell lung cancer by targeting Skp1 to inhibit cancer growth and metastasis. Pharmacol Res 2022;176:106059. [PMID: 34998973 DOI: 10.1016/j.phrs.2022.106059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Hou Z, Lockwood L, Zhang D, Occhiuto CJ, Mo L, Aldrich KE, Stoub HE, Gallo KA, Liby KT, Odom AL. Exploring structural effects in a new class of NRF2 inhibitors. RSC Med Chem 2022. [DOI: 10.1039/d2md00211f] [Reference Citation Analysis]
9 Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. Curr Res Pharmacol Drug Discov 2021;2:100028. [PMID: 34909662 DOI: 10.1016/j.crphar.2021.100028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021;:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
11 Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2high esophageal squamous cell carcinoma. Cell Signal 2021;86:110105. [PMID: 34358647 DOI: 10.1016/j.cellsig.2021.110105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev 2021;73:1150-71. [PMID: 34312303 DOI: 10.1124/pharmrev.120.000122] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
13 Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, Kim MP, Fleming JB. Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis 2021;12:693. [PMID: 34247201 DOI: 10.1038/s41419-021-03970-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu Z, Xu Y, Xu J, Lu J, Cai L, Li Q, Wang C, Su Z. Brusatol Inhibits Tumor Growth and Increases the Efficacy of Cabergoline against Pituitary Adenomas. Oxid Med Cell Longev 2021;2021:6696015. [PMID: 34221237 DOI: 10.1155/2021/6696015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Sivinski J, Zhang DD, Chapman E. Targeting NRF2 to treat cancer. Semin Cancer Biol 2021:S1044-579X(21)00171-1. [PMID: 34102289 DOI: 10.1016/j.semcancer.2021.06.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
16 Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021:S1044-579X(21)00146-2. [PMID: 34020028 DOI: 10.1016/j.semcancer.2021.05.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
17 Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021;44:263-80. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
18 Baumel-alterzon S, Katz LS, Brill G, Jean-pierre C, Li Y, Biswal S, Garcia-ocaña A, Scott DK. Nrf2 Regulates β-cell Mass by Suppressing Cell Death and Promoting Proliferation.. [DOI: 10.1101/2021.03.05.434145] [Reference Citation Analysis]
19 Lastra D, Fernández-Ginés R, Manda G, Cuadrado A. Perspectives on the Clinical Development of NRF2-Targeting Drugs. Handb Exp Pharmacol 2021;264:93-141. [PMID: 32776282 DOI: 10.1007/164_2020_381] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
20 Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021;34:1428-83. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Li D, Hong X, Zhao F, Ci X, Zhang S. Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int 2021;21:116. [PMID: 33596893 DOI: 10.1186/s12935-021-01822-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
22 Kim CW, Oh E, Park HJ. A strategy to prevent atherosclerosis via TNF receptor regulation. FASEB j 2021;35. [DOI: 10.1096/fj.202000764r] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Contigli C, de Souza-fagundes EM, de Andrade WP, Takahashi JA, Oki Y, Fernandes GW. Perspectives of Baccharis Secondary Metabolites as Sources for New Anticancer Drug Candidates. Baccharis 2021. [DOI: 10.1007/978-3-030-83511-8_18] [Reference Citation Analysis]
24 Taguchi K, Yamamoto M. The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment. Cancers (Basel) 2020;13:E46. [PMID: 33375248 DOI: 10.3390/cancers13010046] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 17.0] [Reference Citation Analysis]
25 Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020;63:15410-48. [PMID: 33289552 DOI: 10.1021/acs.jmedchem.0c01449] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
26 Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel) 2020;12:E3458. [PMID: 33233657 DOI: 10.3390/cancers12113458] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
27 He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020;41:405-16. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 17.0] [Reference Citation Analysis]
28 Ambrosio L, Argenziano M, Cucci MA, Grattarola M, de Graaf IAM, Dianzani C, Barrera G, Sánchez Nieves J, Gomez R, Cavalli R, Pizzimenti S. Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants (Basel) 2020;9:E993. [PMID: 33066634 DOI: 10.3390/antiox9100993] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
29 Orrù C, Giordano S, Columbano A. Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020;12:E2932. [PMID: 33053665 DOI: 10.3390/cancers12102932] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
30 Yu X, Shang X, Huang X, Yao G, Song S. Brusatol: A potential anti-tumor quassinoid from Brucea javanica. Chinese Herbal Medicines 2020;12:359-66. [DOI: 10.1016/j.chmed.2020.05.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
31 Yen CH, Hsu CM, Hsiao SY, Hsiao HH. Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int J Mol Sci 2020;21:E6723. [PMID: 32937821 DOI: 10.3390/ijms21186723] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
32 Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, LaPak KM, Weissman BE, Moorman NJ, Major MB. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J Cell Sci 2020;133:jcs241356. [PMID: 32546533 DOI: 10.1242/jcs.241356] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
33 Lee JH, Mohan CD, Deivasigamani A, Jung YY, Rangappa S, Basappa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Garg M, Lin ZX, Rangappa KS, Sethi G, Hui KM, Ahn KS. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J Adv Res 2020;26:83-94. [PMID: 33133685 DOI: 10.1016/j.jare.2020.07.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 22.7] [Reference Citation Analysis]
34 Zhao Y, Han Y, Wang Z, Chen T, Qian H, He J, Li J, Han B, Wang T. Rosmarinic acid protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos. Toxicology in Vitro 2020;65:104823. [DOI: 10.1016/j.tiv.2020.104823] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
35 Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020;154-155:245-73. [PMID: 32473991 DOI: 10.1016/j.addr.2020.05.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
36 Pei Y, Hwang N, Lang F, Zhou L, Wong JH, Singh RK, Jha HC, El-Deiry WS, Du Y, Robertson ES. Quassinoid analogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform. Commun Biol 2020;3:267. [PMID: 32461675 DOI: 10.1038/s42003-020-0996-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
37 Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep 2020;37:797-826. [PMID: 32400766 DOI: 10.1039/c9np00061e] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
38 Zhang LL, Guo J, Jiang XM, Chen XP, Wang YT, Li A, Lin LG, Li H, Lu JJ. Identification of nagilactone E as a protein synthesis inhibitor with anticancer activity. Acta Pharmacol Sin 2020;41:698-705. [PMID: 32047261 DOI: 10.1038/s41401-019-0332-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
39 Patra U, Mukhopadhyay U, Mukherjee A, Sarkar R, Chawla-Sarkar M. Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. Oxid Med Cell Longev 2020;2020:7289120. [PMID: 32322337 DOI: 10.1155/2020/7289120] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
40 Panieri E, Buha A, Telkoparan-Akillilar P, Cevik D, Kouretas D, Veskoukis A, Skaperda Z, Tsatsakis A, Wallace D, Suzen S, Saso L. Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020;9:E193. [PMID: 32106613 DOI: 10.3390/antiox9030193] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 20.3] [Reference Citation Analysis]
41 Zhang M, Xu Y, Jiang L. Sulforaphane attenuates angiotensin II-induced human umbilical vein endothelial cell injury by modulating ROS-mediated mitochondrial signaling. Hum Exp Toxicol 2020;39:734-47. [DOI: 10.1177/0960327119893414] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
42 Lin H, Qiao Y, Yang H, Nan Q, Qu W, Feng F, Liu W, Chen Y, Sun H. Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Med Chem 2020;12:243-67. [PMID: 31950858 DOI: 10.4155/fmc-2019-0285] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
43 Wang H, Tu WJ, Xiao C, Dong MX, Ye YT, Deng J, Wang Y, Sha H, Liu Q. Nrf2 played an important role in radiation protection effect of low-level laser exposed on umbilical cord mesenchymal stem cell. Tissue Cell 2020;63:101329. [PMID: 32223956 DOI: 10.1016/j.tice.2019.101329] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
44 Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Cited by in Crossref: 532] [Cited by in F6Publishing: 559] [Article Influence: 133.0] [Reference Citation Analysis]
45 Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, Lapak KM, Weissman BE, Moorman NJ, Ben Major M. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor.. [DOI: 10.1101/832279] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Qian Q, Chen W, Cao Y, Cao Q, Cui Y, Li Y, Wu J. Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. Oxid Med Cell Longev 2019;2019:9240426. [PMID: 31583051 DOI: 10.1155/2019/9240426] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
47 Paunkov A, Chartoumpekis DV, Ziros PG, Sykiotis GP. A Bibliometric Review of the Keap1/Nrf2 Pathway and its Related Antioxidant Compounds. Antioxidants (Basel) 2019;8:E353. [PMID: 31480567 DOI: 10.3390/antiox8090353] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 13.3] [Reference Citation Analysis]
48 Schmidlin CJ, Dodson MB, Zhang DD. Filtering through the role of NRF2 in kidney disease. Arch Pharm Res 2020;43:361-9. [PMID: 31372933 DOI: 10.1007/s12272-019-01177-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
49 Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid Med Cell Longev 2019;2019:9372182. [PMID: 31396308 DOI: 10.1155/2019/9372182] [Cited by in Crossref: 252] [Cited by in F6Publishing: 273] [Article Influence: 63.0] [Reference Citation Analysis]
50 Kerins MJ, Liu P, Tian W, Mannheim W, Zhang DD, Ooi A. Genome-Wide CRISPR Screen Reveals Autophagy Disruption as the Convergence Mechanism That Regulates the NRF2 Transcription Factor. Mol Cell Biol 2019;39:e00037-19. [PMID: 31010806 DOI: 10.1128/MCB.00037-19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
51 Gebrelibanos Hiben M, de Haan L, Spenkelink B, Wesseling S, Louisse J, Vervoort J, Rietjens IMCM. Effects of Maerua subcordata (Gilg) DeWolf on electrophile-responsive element (EpRE)-mediated gene expression in vitro. PLoS One 2019;14:e0215155. [PMID: 30986264 DOI: 10.1371/journal.pone.0215155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
52 Panieri E, Saso L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid Med Cell Longev 2019;2019:8592348. [PMID: 31097977 DOI: 10.1155/2019/8592348] [Cited by in Crossref: 102] [Cited by in F6Publishing: 108] [Article Influence: 25.5] [Reference Citation Analysis]
53 Jiang ZY, Lu MC, You QD. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Inhibition: An Emerging Strategy in Cancer Therapy. J Med Chem 2019;62:3840-56. [PMID: 30444366 DOI: 10.1021/acs.jmedchem.8b01121] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
54 Yen CH, Hsiao HH. NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. Int J Mol Sci 2018;19:E3503. [PMID: 30405034 DOI: 10.3390/ijms19113503] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
55 Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, Henault M, Mostacci N, Farmer P, Renner S, Ihry R, Mansur L, Keller CG, McAllister G, Hild M, Jenkins J, Kaykas A. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat Commun 2018;9:4307. [PMID: 30333485 DOI: 10.1038/s41467-018-06500-x] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 17.2] [Reference Citation Analysis]
56 Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annu Rev Pharmacol Toxicol 2019;59:555-75. [PMID: 30256716 DOI: 10.1146/annurev-pharmtox-010818-021856] [Cited by in Crossref: 166] [Cited by in F6Publishing: 172] [Article Influence: 33.2] [Reference Citation Analysis]
57 Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. Drug Des Devel Ther 2018;12:3181-97. [PMID: 30288023 DOI: 10.2147/DDDT.S172612] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 9.4] [Reference Citation Analysis]
58 Barrera-Rodríguez R. Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomed Rep 2018;9:375-82. [PMID: 30345037 DOI: 10.3892/br.2018.1143] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
59 Guo N, Xu X, Yuan G, Chen X, Wen Q, Guo R. Pharmacokinetic, metabolic profiling and elimination of brusatol in rats. Biomed Chromatogr 2018;32:e4358. [PMID: 30089336 DOI: 10.1002/bmc.4358] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
60 Evans JP, Winiarski BK, Sutton PA, Jones RP, Ressel L, Duckworth CA, Pritchard DM, Lin ZX, Fretwell VL, Tweedle EM, Costello E, Goldring CE, Copple IM, Park BK, Palmer DH, Kitteringham NR. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget 2018;9:27104-16. [PMID: 29930754 DOI: 10.18632/oncotarget.25497] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
61 Matthews JH, Liang X, Paul VJ, Luesch H. A Complementary Chemical and Genomic Screening Approach for Druggable Targets in the Nrf2 Pathway and Small Molecule Inhibitors to Overcome Cancer Cell Drug Resistance. ACS Chem Biol 2018;13:1189-99. [PMID: 29565554 DOI: 10.1021/acschembio.7b01025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
62 Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-antón N, Valverde AM, Guney E, Schmidt HHHW, Michel MC. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018;70:348-83. [DOI: 10.1124/pr.117.014753] [Cited by in Crossref: 320] [Cited by in F6Publishing: 329] [Article Influence: 64.0] [Reference Citation Analysis]
63 Wang M, Shi G, Bian C, Nisar MF, Guo Y, Wu Y, Li W, Huang X, Jiang X, Bartsch JW, Ji P, Zhong JL. UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response. Oxid Med Cell Longev 2018;2018:9742154. [PMID: 29670684 DOI: 10.1155/2018/9742154] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
64 Nicco C, Batteux F. ROS Modulator Molecules with Therapeutic Potential in Cancers Treatments. Molecules 2017;23:E84. [PMID: 29301225 DOI: 10.3390/molecules23010084] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
65 Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int J Mol Sci 2017;18:E2772. [PMID: 29261130 DOI: 10.3390/ijms18122772] [Cited by in Crossref: 314] [Cited by in F6Publishing: 332] [Article Influence: 52.3] [Reference Citation Analysis]
66 Tao S, Rojo de la Vega M, Chapman E, Ooi A, Zhang DD. The effects of NRF2 modulation on the initiation and progression of chemically and genetically induced lung cancer. Mol Carcinog 2018;57:182-92. [PMID: 28976703 DOI: 10.1002/mc.22745] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 10.8] [Reference Citation Analysis]
67 Oh ET, Kim CW, Kim HG, Lee JS, Park HJ. Brusatol-Mediated Inhibition of c-Myc Increases HIF-1α Degradation and Causes Cell Death in Colorectal Cancer under Hypoxia. Theranostics 2017;7:3415-31. [PMID: 28912885 DOI: 10.7150/thno.20861] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 6.7] [Reference Citation Analysis]
68 Riz I, Hawley RG. Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients. Oncoscience 2017;4:79-94. [PMID: 28966941 DOI: 10.18632/oncoscience.356] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
69 Woo Y, Oh J, Kim JS. Suppression of Nrf2 Activity by Chestnut Leaf Extract Increases Chemosensitivity of Breast Cancer Stem Cells to Paclitaxel. Nutrients 2017;9:E760. [PMID: 28718813 DOI: 10.3390/nu9070760] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
70 Catanzaro E, Calcabrini C, Turrini E, Sestili P, Fimognari C. Nrf2: a potential therapeutic target for naturally occurring anticancer drugs? Expert Opin Ther Targets 2017;21:781-93. [PMID: 28675319 DOI: 10.1080/14728222.2017.1351549] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
71 Xiang Y, Ye W, Huang C, Lou B, Zhang J, Yu D, Huang X, Chen B, Zhou M. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway. Biochem Biophys Res Commun 2017;487:820-6. [PMID: 28455228 DOI: 10.1016/j.bbrc.2017.04.133] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
72 Toth RK, Warfel NA. Strange Bedfellows: Nuclear Factor, Erythroid 2-Like 2 (Nrf2) and Hypoxia-Inducible Factor 1 (HIF-1) in Tumor Hypoxia. Antioxidants (Basel) 2017;6:E27. [PMID: 28383481 DOI: 10.3390/antiox6020027] [Cited by in Crossref: 50] [Cited by in F6Publishing: 56] [Article Influence: 8.3] [Reference Citation Analysis]