BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu Q, Gaddis SS, MacLeod MC, Walborg EF, Thames HD, DiGiovanni J, Vasquez KM. High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes. Mol Carcinog 2007;46:15-23. [PMID: 17013831 DOI: 10.1002/mc.20261] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Lauria T, Slator C, McKee V, Müller M, Stazzoni S, Crisp AL, Carell T, Kellett A. A Click Chemistry Approach to Developing Molecularly Targeted DNA Scissors. Chemistry 2020;26:16782-92. [PMID: 32706904 DOI: 10.1002/chem.202002860] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013;113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Cited by in Crossref: 128] [Cited by in F6Publishing: 110] [Article Influence: 14.2] [Reference Citation Analysis]
3 Mukherjee A, Vasquez KM. Tools to Study the Role of Architectural Protein HMGB1 in the Processing of Helix Distorting, Site-specific DNA Interstrand Crosslinks. J Vis Exp 2016. [PMID: 27911399 DOI: 10.3791/54678] [Reference Citation Analysis]
4 Simon P, Cannata F, Concordet JP, Giovannangeli C. Targeting DNA with triplex-forming oligonucleotides to modify gene sequence. Biochimie. 2008;90:1109-1116. [PMID: 18460344 DOI: 10.1016/j.biochi.2008.04.004] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 4.4] [Reference Citation Analysis]
5 Doluca O, Boutorine AS, Filichev VV. Triplex-Forming Twisted Intercalating Nucleic Acids (TINAs): Design Rules, Stabilization of Antiparallel DNA Triplexes and Inhibition of G-Quartet-Dependent Self-Association. ChemBioChem 2011;12:2365-74. [DOI: 10.1002/cbic.201100354] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
6 Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008;36:5123-38. [PMID: 18676453 DOI: 10.1093/nar/gkn493] [Cited by in Crossref: 259] [Cited by in F6Publishing: 235] [Article Influence: 18.5] [Reference Citation Analysis]
7 Carr CE, Ganugula R, Shikiya R, Soto AM, Marky LA. Effect of dC → d(m5C) substitutions on the folding of intramolecular triplexes with mixed TAT and C+GC base triplets. Biochimie 2018;146:156-65. [PMID: 29277568 DOI: 10.1016/j.biochi.2017.12.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
8 Bergquist H, Rocha CS, Álvarez-Asencio R, Nguyen CH, Rutland MW, Smith CI, Good L, Nielsen PE, Zain R. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting. PLoS One 2016;11:e0165788. [PMID: 27846236 DOI: 10.1371/journal.pone.0165788] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
9 Genereux JC, Boal AK, Barton JK. DNA-mediated charge transport in redox sensing and signaling. J Am Chem Soc 2010;132:891-905. [PMID: 20047321 DOI: 10.1021/ja907669c] [Cited by in Crossref: 131] [Cited by in F6Publishing: 106] [Article Influence: 10.9] [Reference Citation Analysis]
10 Zaghloul EM, Madsen AS, Moreno PM, Oprea II, El-Andaloussi S, Bestas B, Gupta P, Pedersen EB, Lundin KE, Wengel J, Smith CI. Optimizing anti-gene oligonucleotide 'Zorro-LNA' for improved strand invasion into duplex DNA. Nucleic Acids Res 2011;39:1142-54. [PMID: 20860997 DOI: 10.1093/nar/gkq835] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
11 Chen Z, Zhang H, Ma X, Lin Z, Zhang L, Chen G. A novel fluorescent reagent for recognition of triplex DNA with high specificity and selectivity. Analyst 2015;140:7742-7. [PMID: 26456316 DOI: 10.1039/c5an01852h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
12 Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011;8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Cited by in Crossref: 133] [Cited by in F6Publishing: 116] [Article Influence: 12.1] [Reference Citation Analysis]
13 Reeves GA, Talavera D, Thornton JM. Genome and proteome annotation: organization, interpretation and integration. J R Soc Interface 2009;6:129-47. [PMID: 19019817 DOI: 10.1098/rsif.2008.0341] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
14 Rogers FA, Lin SS, Hegan DC, Krause DS, Glazer PM. Targeted gene modification of hematopoietic progenitor cells in mice following systemic administration of a PNA-peptide conjugate. Mol Ther 2012;20:109-18. [PMID: 21829173 DOI: 10.1038/mt.2011.163] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.9] [Reference Citation Analysis]
15 Brázda V, Coufal J. Recognition of Local DNA Structures by p53 Protein. Int J Mol Sci 2017;18:E375. [PMID: 28208646 DOI: 10.3390/ijms18020375] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
16 Boulware SB, Christensen LA, Thames H, Coghlan L, Vasquez KM, Finch RA. Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer. Mol Carcinog 2014;53:744-52. [PMID: 23681918 DOI: 10.1002/mc.22026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
17 Su Y, Bayarjargal M, Hale TK, Filichev VV. DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies. Beilstein J Org Chem 2021;17:749-61. [PMID: 33828619 DOI: 10.3762/bjoc.17.65] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Taniguchi Y, Sasaki S. An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT). Org Biomol Chem 2012;10:8336-41. [PMID: 22987068 DOI: 10.1039/c2ob26431e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
19 Maldonado R, Filarsky M, Grummt I, Längst G. Purine- and pyrimidine-triple-helix-forming oligonucleotides recognize qualitatively different target sites at the ribosomal DNA locus. RNA 2018;24:371-80. [PMID: 29222118 DOI: 10.1261/rna.063800.117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
20 Miyoshi D, Ueda YM, Shimada N, Nakano S, Sugimoto N, Maruyama A. Drastic stabilization of parallel DNA hybridizations by a polylysine comb-type copolymer with hydrophilic graft chain. ChemMedChem 2014;9:2156-63. [PMID: 25045164 DOI: 10.1002/cmdc.201402157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
21 Zheng R, Shen Z, Tripathi V, Xuan Z, Freier SM, Bennett CF, Prasanth SG, Prasanth KV. Polypurine-repeat-containing RNAs: a novel class of long non-coding RNA in mammalian cells. J Cell Sci 2010;123:3734-44. [PMID: 20940252 DOI: 10.1242/jcs.070466] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
22 Cannata F, Brunet E, Perrouault L, Roig V, Ait-Si-Ali S, Asseline U, Concordet JP, Giovannangeli C. Triplex-forming oligonucleotide-orthophenanthroline conjugates for efficient targeted genome modification. Proc Natl Acad Sci U S A 2008;105:9576-81. [PMID: 18599454 DOI: 10.1073/pnas.0710433105] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lee HT, Carr CE, Khutsishvili I, Marky LA. Effect of Loop Length and Sequence on the Stability of DNA Pyrimidine Triplexes with TAT Base Triplets. J Phys Chem B 2017;121:9175-84. [PMID: 28875701 DOI: 10.1021/acs.jpcb.7b07591] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
24 Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J 2009;4:1278-92. [PMID: 19606430 DOI: 10.1002/biot.200900006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
25 Benfield AP, Macleod MC, Liu Y, Wu Q, Wensel TG, Vasquez KM. Targeted generation of DNA strand breaks using pyrene-conjugated triplex-forming oligonucleotides. Biochemistry 2008;47:6279-88. [PMID: 18473480 DOI: 10.1021/bi7024029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
26 Gillespie MN, Pastukh VM, Ruchko MV. Controlled DNA "damage" and repair in hypoxic signaling. Respir Physiol Neurobiol 2010;174:244-51. [PMID: 20831905 DOI: 10.1016/j.resp.2010.08.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
27 Paquet J, Henrionnet C, Pinzano A, Vincourt JB, Gillet P, Netter P, Chary-Valckenaere I, Loeuille D, Pourel J, Grossin L. Alternative for anti-TNF antibodies for arthritis treatment. Mol Ther 2011;19:1887-95. [PMID: 21811249 DOI: 10.1038/mt.2011.156] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
28 Mazo A, Hodgson JW, Petruk S, Sedkov Y, Brock HW. Transcriptional interference: an unexpected layer of complexity in gene regulation. J Cell Sci 2007;120:2755-61. [PMID: 17690303 DOI: 10.1242/jcs.007633] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 4.7] [Reference Citation Analysis]
29 Matsuno Y, Yamashita T, Wagatsuma M, Yamakage H. Convergence in LINE-1 nucleotide variations can benefit redundantly forming triplexes with lncRNA in mammalian X-chromosome inactivation. Mob DNA 2019;10:33. [PMID: 31384315 DOI: 10.1186/s13100-019-0173-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
30 van der Gun BT, Maluszynska-Hoffman M, Kiss A, Arendzen AJ, Ruiters MH, McLaughlin PM, Weinhold E, Rots MG. Targeted DNA methylation by a DNA methyltransferase coupled to a triple helix forming oligonucleotide to down-regulate the epithelial cell adhesion molecule. Bioconjug Chem 2010;21:1239-45. [PMID: 20593890 DOI: 10.1021/bc1000388] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
31 Belotserkovskii BP, Liu R, Hanawalt PC. Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich's ataxia triplet repeats. Mol Carcinog 2009;48:299-308. [PMID: 19306309 DOI: 10.1002/mc.20486] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
32 Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 2012;22:1372-81. [PMID: 22550012 DOI: 10.1101/gr.130237.111] [Cited by in Crossref: 124] [Cited by in F6Publishing: 111] [Article Influence: 12.4] [Reference Citation Analysis]
33 O'Neill RJ. Seq'ing identity and function in a repeat-derived noncoding RNA world. Chromosome Res 2020;28:111-27. [PMID: 32146545 DOI: 10.1007/s10577-020-09628-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Geel TM, Ruiters MHJ, Cool RH, Halby L, Voshart DC, Andrade Ruiz L, Niezen-Koning KE, Arimondo PB, Rots MG. The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philos Trans R Soc Lond B Biol Sci 2018;373:20170077. [PMID: 29685979 DOI: 10.1098/rstb.2017.0077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
35 Paramasivam M, Cogoi S, Filichev VV, Bomholt N, Pedersen EB, Xodo LE. Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation. Nucleic Acids Res 2008;36:3494-507. [PMID: 18456705 DOI: 10.1093/nar/gkn242] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.4] [Reference Citation Analysis]
36 Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie. 2011;93:1197-1208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 5.6] [Reference Citation Analysis]
37 Fadaka AO, Pretorius A, Klein A. Functional Prediction of Candidate MicroRNAs for CRC Management Using in Silico Approach. Int J Mol Sci 2019;20:E5190. [PMID: 31635135 DOI: 10.3390/ijms20205190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
38 Carrascosa LG, Gómez-Montes S, Aviñó A, Nadal A, Pla M, Eritja R, Lechuga LM. Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method. Nucleic Acids Res 2012;40:e56. [PMID: 22241768 DOI: 10.1093/nar/gkr1304] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
39 Lundin KE, Simonson OE, Moreno PM, Zaghloul EM, Oprea II, Svahn MG, Smith CI. Nanotechnology approaches for gene transfer. Genetica 2009;137:47-56. [PMID: 19488829 DOI: 10.1007/s10709-009-9372-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
40 Maldonado R, Schwartz U, Silberhorn E, Längst G. Nucleosomes Stabilize ssRNA-dsDNA Triple Helices in Human Cells. Mol Cell 2019;73:1243-1254.e6. [PMID: 30770238 DOI: 10.1016/j.molcel.2019.01.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
41 Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008;90:1117-30. [PMID: 18331847 DOI: 10.1016/j.biochi.2008.02.011] [Cited by in Crossref: 174] [Cited by in F6Publishing: 142] [Article Influence: 12.4] [Reference Citation Analysis]
42 Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism mediated by miRNA-DNA•DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta 2014;1839:1079-83. [PMID: 25086339 DOI: 10.1016/j.bbagrm.2014.07.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
43 Glazkov MV. Loop organization of eukaryotic chromosomes and triple-stranded DNA structures. Mol Biol 2011;45:263-74. [DOI: 10.1134/s0026893310061020] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
44 McGorman B, Fantoni NZ, O'Carroll S, Ziemele A, El-Sagheer AH, Brown T, Kellett A. Enzymatic Synthesis of Chemical Nuclease Triplex-Forming Oligonucleotides with Gene-Silencing Applications. Nucleic Acids Res 2022:gkac438. [PMID: 35640595 DOI: 10.1093/nar/gkac438] [Reference Citation Analysis]
45 Jenjaroenpun P, Kuznetsov VA. TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 2009;10 Suppl 3:S9. [PMID: 19958507 DOI: 10.1186/1471-2164-10-S3-S9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
46 Sentürk Cetin N, Kuo CC, Ribarska T, Li R, Costa IG, Grummt I. Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res 2019;47:2306-21. [PMID: 30605520 DOI: 10.1093/nar/gky1305] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]