BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nibourg GAA, Huisman MT, van der Hoeven TV, van Gulik TM, Chamuleau RAFM, Hoekstra R. Stable overexpression of Pregnane X receptor in HepG2 cells increases its potential for bioartificial liver application: PXR Overexpression in HEPG2 for a Bioartificial Liver. Liver Transpl 2010;16:1075-85. [DOI: 10.1002/lt.22110] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Tang N, Zhang F, Li X, Chen Y. Therapeutic evaluation of a microbioartificial liver with recombinant HepG2 cells for rats with hepatic failure. Expert Opinion on Biological Therapy 2013;13:1507-13. [DOI: 10.1517/14712598.2013.843666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
2 Nibourg GA, Chamuleau RA, van Gulik TM, Hoekstra R. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opinion on Biological Therapy 2012;12:905-21. [DOI: 10.1517/14712598.2012.685714] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
3 Su Y, Chen Z, Yan L, Lian F, You J, Wang X, Tang N. Optimizing combination of liver-enriched transcription factors and nuclear receptors simultaneously favors ammonia and drug metabolism in liver cells. Experimental Cell Research 2018;362:504-14. [DOI: 10.1016/j.yexcr.2017.12.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 Adam AAA, van der Mark VA, Ruiter JPN, Wanders RJA, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. Overexpression of carbamoyl-phosphate synthase 1 significantly improves ureagenesis of human liver HepaRG cells only when cultured under shaking conditions. Mitochondrion 2019;47:298-308. [PMID: 30802674 DOI: 10.1016/j.mito.2019.02.005] [Reference Citation Analysis]
5 Zhang FY, Tang NH, Wang XQ, Li XJ, Chen YL. Simultaneous recovery of dual pathways for ammonia metabolism do not improve further detoxification of ammonia in HepG2 cells. Hepatobiliary Pancreat Dis Int 2013;12:525-32. [PMID: 24103284 DOI: 10.1016/s1499-3872(13)60083-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 van Dijk R, Kremer AE, Smit W, van den Elzen B, van Gulik T, Gouma D, Lameris JS, Bikker H, Enemuo V, Stokkers PC, Feist M, Bosma P, Jansen PL, Beuers U. Characterization and treatment of persistent hepatocellular secretory failure. Liver Int 2015;35:1478-88. [PMID: 24905729 DOI: 10.1111/liv.12603] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
7 van Dijk R, Mayayo-peralta I, Aronson SJ, Kattentidt-mouravieva AA, van der Mark VA, de Knegt R, Oruc N, Beuers U, Bosma PJ. Disruption of HNF1α binding site causes inherited severe unconjugated hyperbilirubinemia. Journal of Hepatology 2015;63:1525-9. [DOI: 10.1016/j.jhep.2015.07.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
8 Lau TT, Lee LQ, Leong W, Wang DA. Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers. Biomed Mater 2012;7:065003. [PMID: 23117748 DOI: 10.1088/1748-6041/7/6/065003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
9 Tang N, Wang Y, Wang X, Zhou L, Zhang F, Li X, Chen Y. Stable overexpression of arginase I and ornithine transcarbamylase in HepG2 cells improves its ammonia detoxification. J Cell Biochem 2012;113:518-27. [PMID: 21938740 DOI: 10.1002/jcb.23375] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
10 Hoekstra R, Nibourg GA, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, Lamers WH, Elferink RP, Chamuleau RA. The HepaRG cell line is suitable for bioartificial liver application. Int J Biochem Cell Biol. 2011;43:1483-1489. [PMID: 21726661 DOI: 10.1016/j.biocel.2011.06.011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 5.8] [Reference Citation Analysis]
11 Hoekstra R, Nibourg GA, van der Hoeven TV, Plomer G, Seppen J, Ackermans MT, Camus S, Kulik W, van Gulik TM, Elferink RP. Phase 1 and phase 2 drug metabolism and bile acid production of HepaRG cells in a bioartificial liver in absence of dimethyl sulfoxide. Drug Metab Dispos. 2013;41:562-567. [PMID: 23238784 DOI: 10.1124/dmd.112.049098] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
12 Weiss J, Theile D, Haefeli WE. Rifampicin alters the expression of reference genes used to normalize real-time quantitative RT-PCR data. Naunyn Schmiedebergs Arch Pharmacol 2012;385:1025-34. [PMID: 22825545 DOI: 10.1007/s00210-012-0782-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
13 Kremer AE, van Dijk R, Leckie P, Schaap FG, Kuiper EM, Mettang T, Reiners KS, Raap U, van Buuren HR, van Erpecum KJ. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology. 2012;56:1391-1400. [PMID: 22473838 DOI: 10.1002/hep.25748] [Cited by in Crossref: 170] [Cited by in F6Publishing: 130] [Article Influence: 18.9] [Reference Citation Analysis]
14 Wang X, Li M, Peng L, Tang N. SOD2 promotes the expression of ABCC2 through lncRNA CLCA3p and improves the detoxification capability of liver cells. Toxicology Letters 2020;327:9-18. [DOI: 10.1016/j.toxlet.2020.03.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 van der Mark VA, Rudi de Waart D, Shevchenko V, Elferink RP, Chamuleau RA, Hoekstra R. Stable Overexpression of the Constitutive Androstane Receptor Reduces the Requirement for Culture with Dimethyl Sulfoxide for High Drug Metabolism in HepaRG Cells. Drug Metab Dispos 2017;45:56-67. [PMID: 27780834 DOI: 10.1124/dmd.116.072603] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
16 Thangavel C, Boopathi E, Shapiro BH. Inherent sex-dependent regulation of human hepatic CYP3A5. Br J Pharmacol 2013;168:988-1000. [PMID: 22994453 DOI: 10.1111/j.1476-5381.2012.02222.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
17 Pan X, Li L. Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary & Pancreatic Diseases International 2012;11:594-605. [DOI: 10.1016/s1499-3872(12)60230-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
18 Nibourg GA, Chamuleau RA, van der Hoeven TV, Maas MA, Ruiter AF, Lamers WH, Oude Elferink RP, van Gulik TM, Hoekstra R. Liver progenitor cell line HepaRG differentiated in a bioartificial liver effectively supplies liver support to rats with acute liver failure. PLoS One 2012;7:e38778. [PMID: 22719943 DOI: 10.1371/journal.pone.0038778] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
19 Nibourg GA, Boer JD, van der Hoeven TV, Ackermans MT, van Gulik TM, Chamuleau RA, Hoekstra R. Perfusion flow rate substantially contributes to the performance of the HepaRG-AMC-bioartificial liver. Biotechnol Bioeng 2012;109:3182-8. [PMID: 22729831 DOI: 10.1002/bit.24586] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
20 Nibourg GAA, Hoekstra R, van der Hoeven TV, Ackermans MT, Hakvoort TBM, van Gulik TM, Chamuleau RAFM. Effects of acute-liver-failure-plasma exposure on hepatic functionality of HepaRG-AMC-Bioartificial Liver. Liver Int 2013;33:516-24. [DOI: 10.1111/liv.12090] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
21 Nibourg GA, Hoekstra R, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, Chamuleau RA. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor. Int J Biochem Cell Biol 2013;45:1860-8. [PMID: 23770120 DOI: 10.1016/j.biocel.2013.05.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
22 Zhang X, Lu J, He B, Tang L, Liu X, Zhu D, Cao H, Wang Y, Li L. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro. Int J Mol Med 2017;39:101-12. [PMID: 27959388 DOI: 10.3892/ijmm.2016.2825] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
23 Li ZH, Xie ZY, Ouyang XX, Huang KZ, Yu XP, Zhao YL, Zhang YH, Zhu DH, Yu J, Li LJ. Assessment of biological functions for C3A cells interacting with adverse environments of liver failure plasma. Hepatobiliary Pancreat Dis Int 2020;19:129-37. [PMID: 31704080 DOI: 10.1016/j.hbpd.2019.10.004] [Reference Citation Analysis]
24 Luparello C. Cadmium-Associated Molecular Signatures in Cancer Cell Models. Cancers (Basel) 2021;13:2823. [PMID: 34198869 DOI: 10.3390/cancers13112823] [Reference Citation Analysis]
25 Hoekstra R, Nibourg GA, Van der Hoeven TV, Ackermans MT, Hakvoort TB, Van Gulik TM, Oude Elferink RP, Chamuleau RA. The Effect of Rat Acute-Liver-Failure Plasma on HepaRG Cells. Int J Artif Organs 2012;35:1006-14. [DOI: 10.1177/039139881203501106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]