BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Poulin P, Burczynski FJ, Haddad S. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research. J Pharm Sci 2016;105:497-508. [PMID: 26173749 DOI: 10.1002/jps.24571] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Li N, Badrinarayanan A, Ishida K, Li X, Roberts J, Wang S, Hayashi M, Gupta A. Albumin-Mediated Uptake Improves Human Clearance Prediction for Hepatic Uptake Transporter Substrates Aiding a Mechanistic In Vitro-In Vivo Extrapolation (IVIVE) Strategy in Discovery Research. AAPS J 2021;23. [DOI: 10.1208/s12248-020-00528-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Zueva I, Lushchekina S, Shulnikova P, Lenina O, Petrov K, Molochkina E, Masson P. α-tocopherol, a slow-binding inhibitor of acetylcholinesterase. Chem Biol Interact 2021;348:109646. [PMID: 34506764 DOI: 10.1016/j.cbi.2021.109646] [Reference Citation Analysis]
3 Da-Silva F, Boulenc X, Vermet H, Compigne P, Gerbal-Chaloin S, Daujat-Chavanieu M, Klieber S, Poulin P. Improving Prediction of Metabolic Clearance Using Quantitative Extrapolation of Results Obtained From Human Hepatic Micropatterned Cocultures Model and by Considering the Impact of Albumin Binding. J Pharm Sci 2018;107:1957-72. [PMID: 29524447 DOI: 10.1016/j.xphs.2018.03.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
4 Willson CM, Grundmann O. In vitro assays in natural products research - a matter of concentration and relevance to in vivo administration using resveratrol, α-mangostin/γ-mangostin and xanthohumol as examples. Nat Prod Res 2017;31:492-506. [PMID: 27234135 DOI: 10.1080/14786419.2016.1190721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
5 Yang Y, Shi CY, Xie J, Dai JH, He SL, Tian Y. Identification of Potential Dipeptidyl Peptidase (DPP)-IV Inhibitors among Moringa oleifera Phytochemicals by Virtual Screening, Molecular Docking Analysis, ADME/T-Based Prediction, and In Vitro Analyses. Molecules 2020;25:E189. [PMID: 31906524 DOI: 10.3390/molecules25010189] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
6 Petrov K, Zueva I, Kovyazina I, Sedov I, Lushchekina S, Kharlamova A, Lenina O, Koshkin S, Shtyrlin Y, Nikolsky E, Masson P. C-547, a 6-methyluracil derivative with long-lasting binding and rebinding on acetylcholinesterase: Pharmacokinetic and pharmacodynamic studies. Neuropharmacology 2018;131:304-15. [DOI: 10.1016/j.neuropharm.2017.12.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
7 Baecker D, Obermoser V, Kirchner EA, Hupfauf A, Kircher B, Gust R. Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes. Dalton Trans 2019;48:15856-68. [DOI: 10.1039/c9dt03330k] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shargh VH, Hondermarck H, Liang M. Albumin hybrid nanoparticles loaded with tyrosine kinase A inhibitor GNF-5837 for targeted inhibition of breast cancer cell growth and invasion. International Journal of Pharmaceutics 2016;515:527-34. [DOI: 10.1016/j.ijpharm.2016.10.057] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
9 Krause S, Goss KU. Could chemical exposure and bioconcentration in fish be affected by slow binding kinetics in blood? Environ Sci Process Impacts 2021;23:714-22. [PMID: 34037639 DOI: 10.1039/d1em00056j] [Reference Citation Analysis]
10 Mao J, Tay S, Khojasteh CS, Chen Y, Hop CECA, Kenny JR. Evaluation of Time Dependent Inhibition Assays for Marketed Oncology Drugs: Comparison of Human Hepatocytes and Liver Microsomes in the Presence and Absence of Human Plasma. Pharm Res 2016;33:1204-19. [DOI: 10.1007/s11095-016-1865-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
11 Poulin P, Haddad S. A New Guidance for the Prediction of Hepatic Clearance in the Early Drug Discovery and Development from the in Vitro-to-in Vivo Extrapolation Method and an Approach for Exploring Whether an Albumin-Mediated Hepatic Uptake Phenomenon Could be Present Under in Vivo Conditions. J Pharm Sci 2021;110:2841-58. [PMID: 33857483 DOI: 10.1016/j.xphs.2021.04.002] [Reference Citation Analysis]
12 Bi Y, Ryu S, Tess DA, Rodrigues AD, Varma MVS. Effect of Human Plasma on Hepatic Uptake of Organic Anion–Transporting Polypeptide 1B Substrates: Studies Using Transfected Cells and Primary Human Hepatocytes. Drug Metab Dispos 2020;49:72-83. [DOI: 10.1124/dmd.120.000134] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
13 Kim S, Lee K, Miyauchi S, Sugiyama Y. Extrapolation of In Vivo Hepatic Clearance from In Vitro Uptake Clearance by Suspended Human Hepatocytes for Anionic Drugs with High Binding to Human Albumin: Improvement of In Vitro-to-In Vivo Extrapolation by Considering the “Albumin-Mediated” Hepatic Uptake Mechanism on the Basis of the “Facilitated-Dissociation Model”. Drug Metab Dispos 2019;47:94-103. [DOI: 10.1124/dmd.118.083733] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
14 Chang TY, Wang HJ, Hsu SH, Chang ML, Kao LT, Pao LH. Evidence of the Need for Modified Well-stirred Model in In Vitro to In Vivo Extrapolation. Eur J Pharm Sci 2022;:106268. [PMID: 35901930 DOI: 10.1016/j.ejps.2022.106268] [Reference Citation Analysis]
15 Poulin P, Bteich M, Haddad S. Supplemental Analysis of the Prediction of Hepatic Clearance of Binary Mixtures of Bisphenol A and Naproxen Determined in an Isolated Perfused Rat Liver Model to Promote the Understanding of Potential Albumin-Facilitated Hepatic Uptake Mechanism. J Pharm Sci 2017;106:3207-14. [PMID: 28823401 DOI: 10.1016/j.xphs.2017.07.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
16 Zandona A, Maraković N, Mišetić P, Madunić J, Miš K, Padovan J, Pirkmajer S, Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch Toxicol 2021;95:2737-54. [PMID: 34173857 DOI: 10.1007/s00204-021-03098-w] [Reference Citation Analysis]
17 Bteich M, Poulin P, Haddad S. Comparative Assessment of Extrapolation Methods Based on the Conventional Free Drug Hypothesis and Plasma Protein-Mediated Hepatic Uptake Theory for the Hepatic Clearance Predictions of Two Drugs Extensively Bound to Both the Albumin And Alpha-1-Acid Glycoprotein. J Pharm Sci 2021;110:1385-91. [PMID: 33217427 DOI: 10.1016/j.xphs.2020.11.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Bteich M, Poulin P, Piette S, Haddad S. Impact of Extensive Plasma Protein Binding on the In Situ Hepatic Uptake and Clearance of Perampanel and Fluoxetine in Sprague Dawley Rats. Journal of Pharmaceutical Sciences 2020;109:3190-205. [DOI: 10.1016/j.xphs.2020.07.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Bowman CM, Chen E, Chen L, Chen Y, Liang X, Wright M, Chen Y, Mao J. Changes in Organic Anion Transporting Polypeptide Uptake in HEK293 Overexpressing Cells in the Presence and Absence of Human Plasma. Drug Metab Dispos 2019;48:18-24. [DOI: 10.1124/dmd.119.088948] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
20 Yim CS, Jeong YS, Lee SY, Pyeon W, Ryu HM, Lee JH, Lee KR, Maeng HJ, Chung SJ. Specific Inhibition of the Distribution of Lobeglitazone to the Liver by Atorvastatin in Rats: Evidence for a Rat Organic Anion Transporting Polypeptide 1B2-Mediated Interaction in Hepatic Transport. Drug Metab Dispos 2017;45:246-59. [PMID: 28069721 DOI: 10.1124/dmd.116.074120] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
21 Bteich M, Poulin P, Haddad S. The potential protein-mediated hepatic uptake: discussion on the molecular interactions between albumin and the hepatocyte cell surface and their implications for the in vitro-to-in vivo extrapolations of hepatic clearance of drugs. Expert Opinion on Drug Metabolism & Toxicology 2019;15:633-58. [DOI: 10.1080/17425255.2019.1640679] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
22 Egashira Y, Shimada T, Mayumi K. A Novel Experimental and Theoretical Method for Estimating Albumin-Mediated Hepatic Uptake Based on the Albumin Binding Fraction in Plasma and Human PK Prediction Using a Physiologically-Based Pharmacokinetic Approach. J Pharm Sci 2021;110:2262-73. [PMID: 33476657 DOI: 10.1016/j.xphs.2021.01.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Luo YS, Ferguson KC, Rusyn I, Chiu WA. In Vitro Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances. Toxicol Sci 2020;174:168-77. [PMID: 32040194 DOI: 10.1093/toxsci/kfaa007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
24 Miyauchi S, Masuda M, Kim S, Tanaka Y, Lee K, Iwakado S, Nemoto M, Sasaki S, Shimono K, Tanaka Y, Sugiyama Y. The Phenomenon of Albumin-Mediated Hepatic Uptake of Organic Anion Transport Polypeptide Substrates: Prediction of the In Vivo Uptake Clearance from the In Vitro Uptake by Isolated Hepatocytes Using a Facilitated-Dissociation Model. Drug Metab Dispos 2018;46:259-67. [DOI: 10.1124/dmd.117.077115] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
25 Bounakta S, Bteich M, Mantha M, Poulin P, Haddad S. Predictions of bisphenol A hepatic clearance in the isolated perfused rat liver (IPRL): impact of albumin binding and of co-administration with naproxen. Xenobiotica 2018;48:135-47. [PMID: 28277163 DOI: 10.1080/00498254.2017.1294276] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
26 Ding N, Yamamoto S, Chisaki I, Nakayama M, Matsumoto SI, Hirabayashi H. Utility of Göttingen minipigs for the prediction of human pharmacokinetic profiles after intravenous drug administration. Drug Metab Pharmacokinet 2021;41:100408. [PMID: 34710650 DOI: 10.1016/j.dmpk.2021.100408] [Reference Citation Analysis]
27 Long L, Tan X, Liu Z, Liu Y, Cao X, Shi C. Effects of Human Serum Albumin on the Fluorescence Intensity and Tumor Imaging Properties of IR-780 Dye. Photochem Photobiol 2021. [PMID: 34687567 DOI: 10.1111/php.13547] [Reference Citation Analysis]
28 Fischer FC, Abele C, Droge STJ, Henneberger L, König M, Schlichting R, Scholz S, Escher BI. Cellular Uptake Kinetics of Neutral and Charged Chemicals in in Vitro Assays Measured by Fluorescence Microscopy. Chem Res Toxicol 2018;31:646-57. [PMID: 29939727 DOI: 10.1021/acs.chemrestox.8b00019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
29 Gaohua L, Miao X, Dou L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol 2021;17:1103-24. [PMID: 34253134 DOI: 10.1080/17425255.2021.1951223] [Reference Citation Analysis]
30 Jubie S, Durai U, Latha S, Ayyamperumal S, Wadhwani A, Prabha T. Repurposing of Benzimidazole Scaffolds for HER2 Positive Breast Cancer Therapy: An In-Silico Approach. Curr Drug Res Rev 2021;13:73-83. [PMID: 32955008 DOI: 10.2174/2589977512999200821170221] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Chang X, Tan Y, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022;10:232. [DOI: 10.3390/toxics10050232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Laue H, Hostettler L, Badertscher RP, Jenner KJ, Sanders G, Arnot JA, Natsch A. Examining Uncertainty in In Vitro-In Vivo Extrapolation Applied in Fish Bioconcentration Models. Environ Sci Technol 2020;54:9483-94. [PMID: 32633948 DOI: 10.1021/acs.est.0c01492] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Oh Y, Jeong YS, Kim MS, Min JS, Ryoo G, Park JE, Jun Y, Song YK, Chun SE, Han S, Bae SK, Chung SJ, Lee W. Inhibition of Organic Anion Transporting Polypeptide 1B1 and 1B3 by Betulinic Acid: Effects of Preincubation and Albumin in the Media. J Pharm Sci 2018;107:1713-23. [PMID: 29462635 DOI: 10.1016/j.xphs.2018.02.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
35 Kwon J, Lee H, Escher BI. Bioavailability of hydrophobic organic chemicals on an in vitro metabolic transformation using rat liver S9 fraction. Toxicology in Vitro 2020;66:104835. [DOI: 10.1016/j.tiv.2020.104835] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kratochwil NA, Meille C, Fowler S, Klammers F, Ekiciler A, Molitor B, Simon S, Walter I, Mcginnis C, Walther J, Leonard B, Triyatni M, Javanbakht H, Funk C, Schuler F, Lavé T, Parrott NJ. Metabolic Profiling of Human Long-Term Liver Models and Hepatic Clearance Predictions from In Vitro Data Using Nonlinear Mixed-Effects Modeling. AAPS J 2017;19:534-50. [DOI: 10.1208/s12248-016-0019-7] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
37 Fujino R, Hashizume K, Aoyama S, Maeda K, Ito K, Toshimoto K, Lee W, Ninomiya S, Sugiyama Y. Strategies to improve the prediction accuracy of hepatic intrinsic clearance of three antidiabetic drugs: Application of the extended clearance concept and consideration of the effect of albumin on CYP2C metabolism and OATP1B-mediated hepatic uptake. European Journal of Pharmaceutical Sciences 2018;125:181-92. [DOI: 10.1016/j.ejps.2018.09.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
38 Zhang D, Hop CECA, Patilea-Vrana G, Gampa G, Seneviratne HK, Unadkat JD, Kenny JR, Nagapudi K, Di L, Zhou L, Zak M, Wright MR, Bumpus NN, Zang R, Liu X, Lai Y, Khojasteh SC. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule-Related Therapeutic Modalities. Drug Metab Dispos 2019;47:1122-35. [PMID: 31266753 DOI: 10.1124/dmd.119.086744] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
39 Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021;53:207-33. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Reference Citation Analysis]
40 Naresh P, Selvaraj A, Shyam Sundar P, Murugesan S, Sathianarayanan S, Namboori P K K, Jubie S. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J Biomol Struct Dyn 2020;:1-13. [PMID: 33345726 DOI: 10.1080/07391102.2020.1862707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Bowman CM, Okochi H, Benet LZ. The Presence of a Transporter-Induced Protein Binding Shift: A New Explanation for Protein-Facilitated Uptake and Improvement for In Vitro-In Vivo Extrapolation. Drug Metab Dispos 2019;47:358-63. [PMID: 30674616 DOI: 10.1124/dmd.118.085779] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
42 Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022;12:2462-78. [PMID: 35646532 DOI: 10.1016/j.apsb.2022.02.015] [Reference Citation Analysis]
43 Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021;42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Reference Citation Analysis]
44 Paini A, Leonard JA, Kliment T, Tan YM, Worth A. Investigating the state of physiologically based kinetic modelling practices and challenges associated with gaining regulatory acceptance of model applications. Regul Toxicol Pharmacol 2017;90:104-15. [PMID: 28866268 DOI: 10.1016/j.yrtph.2017.08.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
45 Wang HJ, Benet LZ. Protein Binding and Hepatic Clearance: Re-Examining the Discrimination between Models of Hepatic Clearance with Diazepam in the Isolated Perfused Rat Liver Preparation. Drug Metab Dispos 2019;47:1397-402. [PMID: 31563869 DOI: 10.1124/dmd.119.088872] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
46 Fukuchi Y, Toshimoto K, Mori T, Kakimoto K, Tobe Y, Sawada T, Asaumi R, Iwata T, Hashimoto Y, Nunoya KI, Imawaka H, Miyauchi S, Sugiyam Y. Analysis of Nonlinear Pharmacokinetics of a Highly Albumin-Bound Compound: Contribution of Albumin-Mediated Hepatic Uptake Mechanism. J Pharm Sci 2017;106:2704-14. [PMID: 28465151 DOI: 10.1016/j.xphs.2017.04.052] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
47 Abdel-Tawab M. Considerations to Be Taken When Carrying Out Medicinal Plant Research-What We Learn from an Insight into the IC50 Values, Bioavailability and Clinical Efficacy of Exemplary Anti-Inflammatory Herbal Components. Pharmaceuticals (Basel) 2021;14:437. [PMID: 34066427 DOI: 10.3390/ph14050437] [Reference Citation Analysis]
48 Jaroch K, Jaroch A, Bojko B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 2018;147:297-312. [PMID: 28811111 DOI: 10.1016/j.jpba.2017.07.023] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
49 Poulin P, Haddad S. Extrapolation of the Hepatic Clearance of Drugs in the Absence of Albumin In Vitro to That in the Presence of Albumin In Vivo : Comparative Assessement of 2 Extrapolation Models Based on the Albumin-Mediated Hepatic Uptake Theory and Limitations and Mechanistic Insights. Journal of Pharmaceutical Sciences 2018;107:1791-7. [DOI: 10.1016/j.xphs.2018.03.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
50 Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation. Eur J Pharm Sci 2018;123:502-14. [PMID: 30098391 DOI: 10.1016/j.ejps.2018.08.008] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
51 Proença S, Escher BI, Fischer FC, Fisher C, Grégoire S, Hewitt NJ, Nicol B, Paini A, Kramer NI. Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicology in Vitro 2021;73:105133. [DOI: 10.1016/j.tiv.2021.105133] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
52 Smith JN, Carver ZA, Weber TJ, Timchalk C. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach. Toxicol Sci 2017;157:438-50. [PMID: 28402492 DOI: 10.1093/toxsci/kfx055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
53 Poulin P, Arnett R. Integration of a plasma protein binding factor to the Chemical-Specific Adjustment Factor (CSAF) for facilitating the estimation of uncertainties in interspecies extrapolations when deriving health-based exposure limits for active pharmaceutical ingredients: Investigation of recent drug datasets. Regul Toxicol Pharmacol 2017;91:142-50. [PMID: 29107009 DOI: 10.1016/j.yrtph.2017.10.026] [Reference Citation Analysis]