BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tomàs J, Santafé MM, Garcia N, Lanuza MA, Tomàs M, Besalduch N, Obis T, Priego M, Hurtado E. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. J Neurosci Res 2014;92:543-54. [PMID: 24464361 DOI: 10.1002/jnr.23346] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Tarasova EO, Miteva AS, Gaidukov AE, Balezina OP. The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. Biochem Moscow Suppl Ser A 2015;9:318-28. [DOI: 10.1134/s1990747815050141] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
2 Gaydukov AE, Bogacheva PO, Balezina OP. The Participation of Presynaptic Alpha7 Nicotinic Acetylcholine Receptors in the Inhibition of Acetylcholine Release during Long-Term Activity of Mouse Motor Synapses. Neurochem J 2019;13:20-7. [DOI: 10.1134/s1819712419010082] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Pousinha P, Ribeiro JA. Regulation of Synaptic Transmission by Adenosine at the Neuromuscular Junction. Adenosine Receptors in Neurodegenerative Diseases. Elsevier; 2017. pp. 77-96. [DOI: 10.1016/b978-0-12-803724-9.00004-1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
4 Tsentsevitsky AN, Kovyazina IV, Nurullin LF, Nikolsky EE. Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) modulate the acetylcholine secretion in the frog neuromuscular junction. Neurosci Lett 2017;649:62-9. [PMID: 28408330 DOI: 10.1016/j.neulet.2017.04.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
5 Tsentsevitsky AN, Khaziev EF, Kovyazina IV, Petrov AM. GIRK channel as a versatile regulator of neurotransmitter release via L-type Ca2+ channel-dependent mechanism in the neuromuscular junction. Neuropharmacology 2022;:109021. [PMID: 35245509 DOI: 10.1016/j.neuropharm.2022.109021] [Reference Citation Analysis]
6 Nadal L, Garcia N, Hurtado E, Simó A, Tomàs M, Lanuza MA, Santafé M, Tomàs J. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol Brain 2016;9:67. [PMID: 27339059 DOI: 10.1186/s13041-016-0248-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
7 Tsentsevitsky AN, Zakyrjanova GF, Petrov AM, Kovyazina IV. Breakdown of phospholipids and the elevated nitric oxide are involved in M3 muscarinic regulation of acetylcholine secretion in the frog motor synapse. Biochemical and Biophysical Research Communications 2020;524:589-94. [DOI: 10.1016/j.bbrc.2020.01.112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Pittel Z, Lazar S, Gez R, Chapman S. Early changes in M2 muscarinic acetylcholine receptors (mAChRs) induced by sarin intoxication may be linked to long lasting neurological effects. Neurotoxicology 2018;65:248-54. [PMID: 29128314 DOI: 10.1016/j.neuro.2017.11.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Bernareggi A, Sciancalepore M, Lorenzon P. Interplay Between Cholinergic and Adenosinergic Systems in Skeletal Muscle. Neuroscience 2020;439:41-7. [PMID: 31121259 DOI: 10.1016/j.neuroscience.2019.05.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Zakyrjanova GF, Tsentsevitsky AN, Kuznetsova EA, Petrov AM. Immune-related oxysterol modulates neuromuscular transmission via non-genomic liver X receptor-dependent mechanism. Free Radic Biol Med 2021;174:121-34. [PMID: 34391813 DOI: 10.1016/j.freeradbiomed.2021.08.013] [Reference Citation Analysis]
11 Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó-Ollé A, Cilleros-Mañé V, Just-Borràs L. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Front Pharmacol 2018;9:397. [PMID: 29740322 DOI: 10.3389/fphar.2018.00397] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
12 Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó A, Cilleros V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front Mol Neurosci 2017;10:132. [PMID: 28559796 DOI: 10.3389/fnmol.2017.00132] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
13 Kim YB, Choi JM, Chang YJ, Choi HR, In J, Yang HS. Effects of different sugammadex doses on the train of four ratio recovery progression during rocuronium induced neuromuscular blockade in the rat phrenic nerve hemidiaphragm. Korean J Anesthesiol 2020;73:239-46. [PMID: 31619027 DOI: 10.4097/kja.19278] [Reference Citation Analysis]
14 Simó A, Cilleros-Mañé V, Just-Borràs L, Hurtado E, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. nPKCε Mediates SNAP-25 Phosphorylation of Ser-187 in Basal Conditions and After Synaptic Activity at the Neuromuscular Junction. Mol Neurobiol 2019;56:5346-64. [PMID: 30607888 DOI: 10.1007/s12035-018-1462-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
15 Hurtado E, Cilleros V, Just L, Simó A, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Front Mol Neurosci 2017;10:270. [PMID: 28890686 DOI: 10.3389/fnmol.2017.00270] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bernardazzi C, Pêgo B, de Souza HS. Neuroimmunomodulation in the Gut: Focus on Inflammatory Bowel Disease. Mediators Inflamm 2016;2016:1363818. [PMID: 27471349 DOI: 10.1155/2016/1363818] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
17 Ziganshin AU, Khairullin AE, Hoyle CHV, Grishin SN. Modulatory Roles of ATP and Adenosine in Cholinergic Neuromuscular Transmission. Int J Mol Sci 2020;21:E6423. [PMID: 32899290 DOI: 10.3390/ijms21176423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Kim YB, Lee S, Choi HR, In J, Chang YJ, Kim HJ, Ro YJ, Yang HS. Effects of adenosine receptor agonist on the rocuroniuminduced neuromuscular block and sugammadex-induced recovery. Korean J Anesthesiol 2018;71:476-82. [PMID: 29690754 DOI: 10.4097/kja.d.17.00011] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Bernareggi A, Ren E, Giniatullin A, Luin E, Sciancalepore M, Giniatullin R, Lorenzon P. Adenosine Promotes Endplate nAChR Channel Activity in Adult Mouse Skeletal Muscle Fibers via Low Affinity P1 Receptors. Neuroscience 2018;383:1-11. [PMID: 29733889 DOI: 10.1016/j.neuroscience.2018.04.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Machamer JB, Apland JP, Winner BM, Wolfe SE, Pagarigan KT, Bounader KM, Kasten SA, Adler M, Mcnutt PM. Functional basis for dose-dependent antagonism of rat and rabbit neuromuscular transmission by the bis-pyridinium oxime MMB4. Arch Toxicol 2020;94:3877-91. [DOI: 10.1007/s00204-020-02858-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Kim YB, Yang HS, Kim HJ, Choi HR, In J, Yoon SY, Ro YJ. Effects of neuromuscular presynaptic muscarinic M1 receptor blockade on rocuronium-induced neuromuscular blockade in immobilized tibialis anterior muscles. Clin Exp Pharmacol Physiol 2018;45:1309-16. [PMID: 30005130 DOI: 10.1111/1440-1681.13012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Obis T, Hurtado E, Nadal L, Tomàs M, Priego M, Simon A, Garcia N, Santafe MM, Lanuza MA, Tomàs J. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 2015;8:80. [PMID: 26625935 DOI: 10.1186/s13041-015-0171-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
23 Garcia N, Hernández P, Lanuza MA, Tomàs M, Cilleros-Mañé V, Just-Borràs L, Duran-Vigara M, Polishchuk A, Balanyà-Segura M, Tomàs J. Involvement of the Voltage-Gated Calcium Channels L- P/Q- and N-Types in Synapse Elimination During Neuromuscular Junction Development. Mol Neurobiol 2022. [PMID: 35474562 DOI: 10.1007/s12035-022-02818-2] [Reference Citation Analysis]
24 Kim YB, Sung TY, Yang HS. Factors that affect the onset of action of non-depolarizing neuromuscular blocking agents. Korean J Anesthesiol 2017;70:500-10. [PMID: 29046769 DOI: 10.4097/kjae.2017.70.5.500] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
25 Tomàs JM, Garcia N, Lanuza MA, Nadal L, Tomàs M, Hurtado E, Simó A, Cilleros V. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction. Front Mol Neurosci 2017;10:255. [PMID: 28848391 DOI: 10.3389/fnmol.2017.00255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
26 Nadal L, Garcia N, Hurtado E, Simó A, Tomàs M, Lanuza MA, Cilleros V, Tomàs J. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development. Front Aging Neurosci 2017;9:24. [PMID: 28228723 DOI: 10.3389/fnagi.2017.00024] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
27 Kim YB, Choi JM, Park C, Choi HR, In J, Yang HS. Effects of sevoflurane and adenosine receptor antagonist on the sugammadex-induced recovery from rocuronium-induced neuromuscular blockade in rodent phrenic nerve-hemidiaphragm tissue specimens. Pharmacol Res Perspect 2021;9:e00827. [PMID: 34337892 DOI: 10.1002/prp2.827] [Reference Citation Analysis]
28 Kim YB, Lee S, Lee KC, Kim HJ, Ro YJ, Yang HS. Effects of presynaptic muscarinic cholinoreceptor blockade on neuromuscular transmission as assessed by the train-of-four and the tetanic fade response to rocuronium. Clin Exp Pharmacol Physiol 2017;44:795-802. [PMID: 28394450 DOI: 10.1111/1440-1681.12763] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Ziganshin AU, Khairullin AE, Zobov VV, Ziganshina LE, Gabdrakhmanov AI, Ziganshin BA, Grishin SN. Effects of ATP and adenosine on contraction amplitude of rat soleus muscle at different temperatures. Muscle Nerve 2017;55:417-23. [PMID: 27448234 DOI: 10.1002/mus.25263] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
30 Darabid H, St-Pierre-See A, Robitaille R. Purinergic-Dependent Glial Regulation of Synaptic Plasticity of Competing Terminals and Synapse Elimination at the Neuromuscular Junction. Cell Rep 2018;25:2070-2082.e6. [PMID: 30463006 DOI: 10.1016/j.celrep.2018.10.075] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
31 Khaziev E, Samigullin D, Zhilyakov N, Fatikhov N, Bukharaeva E, Verkhratsky A, Nikolsky E. Acetylcholine-Induced Inhibition of Presynaptic Calcium Signals and Transmitter Release in the Frog Neuromuscular Junction. Front Physiol 2016;7:621. [PMID: 28018246 DOI: 10.3389/fphys.2016.00621] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
32 Lanuza MA, Just-Borràs L, Hurtado E, Cilleros-Mañé V, Tomàs M, Garcia N, Tomàs J. The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells 2019;8:E1578. [PMID: 31817487 DOI: 10.3390/cells8121578] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
33 Simó A, Just-Borràs L, Cilleros-Mañé V, Hurtado E, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front Mol Neurosci 2018;11:207. [PMID: 29946239 DOI: 10.3389/fnmol.2018.00207] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
34 Santafe MM, Priego M, Obis T, Garcia N, Tomàs M, Lanuza MA, Tomàs J. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse. Eur J Neurosci 2015;42:1775-87. [PMID: 25892551 DOI: 10.1111/ejn.12922] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]